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NOTATION AND UNITS

Notation

A brief list of symbols is given here.

Ax, Ay, A z

B L

CL

DL

F c, (Fex, Fcy, Fcz)

K

P(t), (Px' Py, Pz)

e

///

s

t

YL

//'

P

09

Unlisted symbols are defined in the chapter where they appear.

oscillation amplitude along coordinate axis

defined by Equation 2.44

defined by Equation 2.45

defined by Equation 2.46

control acceleration

acceleration magnitude

perturbing acceleration

orbital eccentricity

(1) mass

(2) in Section C.1 of Chapter III, the ratio of the mean motions of the Earth and the

Moon (m : 0.07480133)

(3) in Chapter VI, the fraction of the total time that the control is on (See page 76.)

Lap]ace transform variable

time

distance ratio (See Figure 2.3 and page 10.)

normalized mass parameter (See pages 5 and 6.)

see Equation 2.34

(1) for eccentricity contribution, see Equation 2.6

(2) for Sun's effect in the Earth-Moon system, see Equation 3.32

see Equation 2.33

(1) for eccentricity contribution, see Equation 2.5

(2) for Sun's effect in the Earth-Moon system, see Equation 3.31

frequency

vi



Q Sun

Earth

)_ Moon

Note: A numerical subscript is added to the symbols B L, C L, D L, and YL for a particular libration point;

e.g., BL1 refers to L 1.

Units

Unless other units are specified, the normalized units of the restricted three-body problem will prevail.

These normalized units are defined on pages 5 and 6. Conversion factors for the normalized units are

given in Tables 2.7, 2.8, 2.9, and 2.10. (See explanation on page 23 and following pages.)

Accelerations are frequently expressed in Earth gravity units (g -= 9.81 m/sec2). Note that 1 fps/yr

1 × 10-9g.
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THE CONTROLAND USE OF LIBRATION-POINTSATELLITES*

by

Robert W. Farquhar

Goddard Space Flight Center

CHAPTER I

INTRODUCTION

A. Problem Statement

The five equilibrium solutions of the restricted three-body problem have intrigued mathematicians for

many years. More recently these solutions have aroused the interest of engineers as well. The locations of

these "libration points" relative to a rotating two-body system are essentially constant; three of them are

located along the line joining the two primary bodies, while the other two form equilateral triangles with the

two bodies. A satellite placed at one of these points with the proper velocity will be in equilibrium because

the gravitational and centripetal accelerations acting on the satellite will cancel each other out. However,

the three collinear points are unstable, and the equilateral-triangle points are only quasi-stable. Therefore,

some form of translation control will usually be required to maintain the satellite's position in the vicinity

of a libration point. This "station-keeping" problem is complicated by perturbative accelerations and addi-

tional control functions that are dictated by mission constraints. The primary objective of this research is

to develop general analYtiCal relationships for these control requirements.

A secondary objective is to examine critically, and in some cases to modify, existing proposals for

libration-point satellite missions. This aim will be supplemented by new suggestions for possible applica-

tions of libration-point satellites. These mission analyses are needed to define various control problems

and to provide motivation for the present research.

Attitude control, analysis of transfer trajectories, propulsion systems, and measurement techniques are

beyond the scope of this Study and are only discussed in a cursory manner.

*The information presented herein was submitted as a thesis in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in the Astronautical Sciences, Stanford University, Stanford, California, July 1968.



B. Previous Contributions

Since their discovery by Lagrange in 1772, the libration points of the restricted three-body problem have

been a favorite topic for researchers in celestial mechanics. Although this subject has been treated exten-

sively, with significant contributions by Hill, Darwin, Brown, Moulton, Str_mgren, and others, new papers

are being published at an increasing rate. With the exception of a few perturbation studies, most of this

work has little direct bearing on the main problems of the present study. However, some useful results can

be gleaned from the theoretical literature. An exhaustive list of references can be found in the recent trea-

tise by Szebehely (Reference 1). A less extensive list, but one that is primarily concerned with libration

points, is included in the survey paper by Steg and De Vries (Reference 2).

In sharp contrast to the vast literature concerning the classical problem, only six references that treat

the problem of control of a libration-point satellite could be found. For an unstable eollinear libration point

of the Earth-Moon system, a pioneering paper by Colombo (Reference 3) has shown that

(1) To the first order, this point is an exact solution of a restricted four-body problem (Sun, Earth,

Moon, and satellite).

(2) It is possible to use a simple linear feedback control for position stabilization.

(3) It is possible to obtain the acceleration needed for position and attitude stabilization of a libration-

point satellite by simply varying the magnitude and direction of a solar sail.

It should be noted that the analysis and the design of the feedback control mentioned by Colombo are not

treated in his paper.

An interesting paper by Dusek (Reference 4) has shown that artificial libration points can be generated

by constant low-thrust forces. Dusek also proved that, by varying these forces as a function of the satel-

lite's position, the motion in the vicinity of a point is bounded. A special class of these artificial libration

points, the "isosceles-triangle points," will be considered in the present study.

Dual-axis feedback controls have been treated by Fleming (Reference 5) and by Paul and Shapiro (Ref-

erence 6). Fleming used an original method to design linear and nonlinear controls for a satellite in the

vicinity of an equilateral-triangle point. Paul and Shapiro determined general Routh stability conditions for

all five of the classical libration points. However, the analysis of Paul and Shapiro was limited to three

rather restricted controls.

For a satellite in the vicinity of a collinear libration point, this present author (Reference 7) has shown

that a single-axis linear control using only range and range-rate measurements will guarantee asymptotic

stability. The station-keeping cost for this control was given as a function of the measurement noise. Some

special controls that are needed for an application were also presented.

In a recent paper, Kononenko (Reference 8) used Pontryagin's maximum principle to determine the opti-

mal trajectory between a libration point and some initial point in the vicinity of the libration point. It was

assumed that the satellite was equipped with an engine of limited power.

Applications for libration-point satellites have been suggested in a number of papers (References 7 and

9 to 18). A discussion of some of these proposals will be presented in Chapter VIII.



C. Contributions of This Research

This study is a basic introduction to the libration-point satellite control problem. Most results are pre-

sented in a general analytical form and can readily be adapted to a particular application. Because the most

interesting libration-point satellite applications make use of the collinear points, the major portion of this

research deals with these points. Some preliminary results of this study have already been published by the

present author (References 7 and 16), but more details are given here.

The following paragraphs present in summary form the principal results of this research.

In Chapter II, general equations of motion in the vicinity of a libration point (classical and artificial)

are formulated, and numerical data for many of the collinear libration points of the Solar System are pre-

sented to facilitate the application of general results to specific cases.

Chapter III develops the concept of nominal path control. Also, analytical estimates for corrections to

a small quasi-periodic orbit around a collinear point are given; effects of nonlinearity, eccentricity, and

perturbations are considered; and examples of gravitational perturbations, including a new "equilibrium

solution" of the restricted four-body problem (Sun, Earth, Moon, and satellite), are presented.

Simple linear feedback controls for collinear and equilateral-triangle points are analyzed, and Floquet

stability investigations for certain cases are presented in Chapter IV.

In Chapter V, analytical estimates of station-keeping costs at collinear points are presented, costs are

given as functions of the measurement noise, and a solar sail control technique at the Earth-Moon collinear

points is discussed.

A limit-cycle analysis for an on-off control system at a collinear point is presented in Chapter VI. A

closed-form solution is obtained for an important special case, and the stability of the limit cycle is also

examined. An approximate design technique for the general case is presented as well.

In Chapter VII, a method is presented for stabilizing the position of the mass center of a cable-connected

satellite at an unstable collinear libration point by simply changing the length of the cable with an internal

device.

In Chapter VIII, a novel method for maintaining a continuous communication link between the Earth

and the far side of the Moon is presented, and other new applications for libration-point satellites are also

proposed.
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CHAPTER II

PRELIHINARY DEVELOPHENTS

In this chapter, the equations of motion in the vicinity of libration points are formulated. The libration-

point concept is traced to its origin in the restricted three-body problem, and various assumptions, approxi-

mations, and modifications are discussed..%elevant numerical data for many of the collinear points are

listed in the final section.

A. The Restricted Three-Body Problem

1. Equations of Motion

Consider the motion of an infinitesimal body in the gravitational field of two finite bodies (e.g.,

Earth and Moon) revolving around their common barycenter in elliptical orbits. It is assumed that the infini-

tesimal body does not influence the motion of the two larger bodies, hence the terminology, restricted three-

body problem. The geometry for this problem is shown in Figure 2.1. Here, the two finite bodies are located

at P1 and P2' while the infinitesimal body is at P3" An inertial reference system (_=0' _?0' _0 ) is shown with

its origin at the barycenter of the two finite bodies, and its _o-axis normal to their orbital plane. A rotating

coordinate system (_=,_7,_, with its C-axis passing through P1 and P2' is also introduced. From the figure,

it is obvious that

_:0 = _: cos 0 - 7? sin 0,

and

(2.1)

Differentiation of Equation 2.1 with respect to time gives

_0 = (_- (}_) cos 0 - (7) + O_ sin O,

_o : (_ - 0_?) sin 0 + (_ + O_) cos O,
and

(2.2)

To facilitate analytical manipulations, the following quantities are defined to be unity:

(1) The mean distance between P1 and P2"



_o ,_

///

1111 _ 7 0

I iii/i

_, P2(_2,°,°)

Figure 2.1-Geometry for the restricted three-body

problem.

and

(2) The mean angular rate of the finite

bodies about the barycenter.

(3) The sum of the masses of the two finite

bodies. The larger mass at P1 is taken as 1 -/_,

while the smaller mass at P2 is /_. Therefore, be-

cause the mass ratio is MR -- (1 - tz)/#, then

/z = 1/(1 + MR).

Unless other units are specified, this normalization

will be used throughout this research.

Because the motion of the two finite bodies

can be obtained from the solution of the two-bod__y

problem, it is possible to write the distance IP1P21

and the angular rate 0 as power series in the eccen-

tricity. These series are (Reference 19)

IP1P21 : (_=2 - _1 ) = R : 1 + p (2.3)

and

= 1 + _, (2.4)

where

p =-e cos (t + _)

e 2
+-_-[1 - cos 2(t + _)] + O(e 3) (2.5)

i. = 2e cos (t + _) +5e2 cos 2(t + ¢) + O(e3). (2.6)

The phase angle ¢ is just the true anomaly at t -- 0. It should be noted that these series converge rapidly

when e is small, but are divergent when e > 0.6627 ....

Using Equation 2.2, the kinetic energy of the infinitesimal body can be written as

The potential energy is

where

and

u=-m[h - + (2.s)
L rl

Forming the Lagrangian L = T - U, the equations of motion are obtained by Lagrange_s method. This gives

6



and

F(i- p .]

-F(i-") _]

(2.11)

For circular orbits (e -- 0) of the two finite bodies, Equation 2.11 becomes

- 2_: _ (1r_--if)(_:- __)-_(_: - _:2)'

and

Ri - _) if]
(2.12)

2. Jacobian Constant and the Surfaces of Zero Relative Velocity

It is the purpose of this section to elucidate an important conservation principle of the restricted

three-body problem. Denoting generalized coordinates and velocities by q's and _'s, respectively, the

kinetic energy of a system can be written as

where

T= T(q,_,t)= T 2+ T 1+ T O, (2.13)

T2 =-E aij(q' t)qiqJ' (2.14)

i, j=l

and

T1 ---E/_i(q' t)_i'

i=1

(2.15)

T O _ To(q,t ). (2.16)

Taking the potential energy as

U = U(q,t) (2.17)

and using the definitions



L =- T - U (Lagrangian), (2.18)

and

E _ T + V (total energy),

E. c)LH= q i -_i - L
i=1

(2.19)

(Hamiltonian), (2.20)

it follows that

H-- T 2- T 0+ U-- E- T 1-2T o. (2.21)

It is important to note that, in general, the Hamiltonian is not equal to the total energy. Although this result

is classical, it is often forgotten because "conventional" dynamical systems usually have a kinetic energy

of the form T= T 2.

For the restricted three-body problem, it can be seen from Equation 2.7 that the kinetic energy in

the inertial coordinates is T :- T2(0), and therefore H -- E. If, instead, the rotating coordinates are em-

ployed, the kinetic energy for a unit mass is T -- T 2 + T 1 + T o, where

1 "2 _2 _2), (2.22)+ +

T 1 = 0(_=_ - _)' (2.23)

and

_-1(_2(_:2 + _2). (2.24)T o

Therefore, in the rotating coordinate system, H _ E.

If the two finite bodies are in circular orbits, 0 -- 1, and an interesting relati6n can be found. For

this special case, the potential energy in the rotating coordinates is U = U(q) and /:/-- 0. Although the

Hamiltonian is a constant of the motion, total energy is not conserved* because H _ E. This Hamiltonian is

related to the "Jacobian constant" C (H = - 1C), which is usually found in the form

V 2 -- 2W - C, (2.25)

where

and

W -_-T O - U :-1(_ =2 + 7/2) + __(1-/_) +--./_ (2.26)
r I r 2

By determining the Jacobian constant from the initial conditions of the infinitesimal body, bounds can be

placed on the region of its subsequent motion. Because V 2 is always positive, Equation 2.25 shows that

motion is possible only so long as 2W > C. Taking V : 0 (zero relative velocity) and making use of Equations

*This can also be seen by using inertial coordinates, where U = U(q, t). It then follows that/_ _ 0, and because
H = E, total energy is not conserved.



2.25and2.26,surfacesof zerorelativevelocitycorrespondingto differentvaluesof Ccanbeconstructed
in theconfigurationspace.*

Thecurvesof zerorelativevelocityformedbytheintersectionof thesesurfaceswith theorbital
planeof thetwofinite bodiesaredepictedin Figure2.2for theEarth-Moonsystem(#= 0.0121507).Here
theJacobianconstantsareCO= 3.2880,C 1 = 3.1883, C 2 = 3.1724, C 3 = 3.0121, C 4 = 2.9980, and C 5 =

2.9880. As noted earlier, the possible regions of motion for an infinitesimal body with given initial condi-

tions can be determined from its Jacobian constant. For example, if the body is initially located near the

surface of the Earth and its Jacobian constant is greater than C 0, it can never leave the region bounded by

the C o curve around the Earth. On the other hand, if its Jacobian constant is C 4, motion can take place

everywhere except for the region enclosed by the C 4 curve. Figure 2.2 is a contour map of the modified

potential field of the Earth and Moon in the rotating coordinates. The regions surrounding the Earth and

Moon in this modified potential field can be viewed as valleys and the point at L 4 as a mountain peak.

Notice that saddle surfaces exist at L 1, L 2, and L 3.

Returning to the more realistic case in which the two finite bodies are in elliptical orbits, it can

be seen that even for rotating coordinates, U = U(q, t) and /t _ 0. This means that the Jacobian constant

does not exist in the elliptical case, and the usefulness of Figure 2.2 may be severely limited. However, it

is the opinion of this author that Figure 2.2 is still useful for intuitive reasoning whenthe eccentricity is

small and time intervals are relatively short. For a discussion of this problem, see References 20 to 22.

3. Libration Points

It is well known that there are five equilibrium solutions of Equation 2.11. These equilibrium

points are located in the orbital plane of the two finite bodies, and their general cotffigu"ration is shown in

Figure 2.3. Two of the points, L 4 and L 5, form an equilateral triangle with the finit_ bodies, while the

remaining three, L1, L2, and L 3, are collinear. A common name for these points and the one that will be

used here is "libration points."

The existence of these libration points is reasonable from a purely physical-standpoint because

they are points where the grav:itational and centripetal accelerations are balance6 in the rotating coordinate

system. In the circular restricted three-body prob-

c5 lem, these points will always be stationary. How-

ever, in the elliptical case, the distances from the

finite bodies will vary" periodically while the

L3 •EARTH Li M oNL 2

Figure 2.2-Curves of zero relative velocity for the

Earth-Moon system.

equilateral-triangle and collinear configurations are

maintained. A thorough discussion of the equilibrium

solutions for both the circular and elliptical cases

can be found in Reference 1.

From Figure 2.3, it can be seen that'the

collinear libration points are located at distances

yL R from the finite bodies.$ The constant YL is

*Details of this construction as well as many fine examples for various values of/_ can be found in Reference 1.

tAn additional subscript is added for a particular point; e.g., 5%1 refers to L 1.



Y X /

L 3

k
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60 °
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Figure 2.3-Libration-point geometry.

obtained by finding the real root of a certain quintic equation. The quintic equations for the three collinear

points are (Reference 1)

×_1- (3 - _)y_._+ (3 - 2_)y_ - _,y_,_+ 2_yL_- _,=o, (2.2v)

5 4 _ )/2)/L2 + (3 - I_))/L2 + (3 - 2/z)y_2 # L2 - 2_YL2 - tz -- 0, (2.28)

and

)/_.8+(2 +_)y48+ (1+ 2_))/_8- (1 - _))/_8- 2(1 - _)yL8- (1 - _) = o. (_.29)

Series solutions for )/L are also available, but are not recommended for numerical computations at L 1 and

L 2 where the convergence is poor. However, abbreviated versions of the series at L 1 and L2 are sometimes

useful for analytic approximations. The series for L 1 and L 2 are 'Reference 1)

10



and

YL1 -- -_-_-] -_ + .. (2.30)

y,_2: +_l_]-_\_/ +" (2.31)

The series solution for L 3 converges very rapidly, and because the real root of Equation 2.29 is near +1, it

is preferred for numerical computations. This series is given by (Reference 1)

1 23 2+23 3+ 761 4 3163e5 30703 6)rL8 =1+_ +_ _ -5_ _ "7-_ +_ +o(J), (2.32)

where e -- 7/L/12.

B. Equations of Motion in the Vicinity of Libration Points

In this section, the equations of motion in the vicinity of libration points are obtained in a general form

that is readily adaptable to the perturbation analyses of Chapter III. Although the derivation could proceed

directly from Equation 2.11, a more basic approach is followed here. All of the classical libration points

with the exception of L 3, which is not too interesting from the standpoint of possible applications, are

treated. In addition, an artificial libration point that forms an isosceles triangle with the two finite bodies

is examined.

1. Collinear Points

In Figure 2.3, the distance R and the angular rate 0 are defined as

and
R : i + p(t) (2.33)

= 1 + _(t), (2.34)

where the quantities p(t) and v(t) are functions of time that arise from the orbital eccentricity of the finite

bodies and perturbations from bodies external to the primary two-body system. The unit vectors i and j are

fixed in the rotating reference frame, which means that
I

di
d-7 : (1 + .)j

(2.35)
and d j = -(1 + v)i.

dt

A right,handed triad is formed by taking the cross product k = i × j.

From Figure 2.3, it is evident that, for a satellite (infinitesimal mass) in the vicinity of either L 1

or L 2, the position vector relative to the larger body (1 -/t) is*

r=[(1 _+ZL)(1 + p) + x]i + yj + zk. (2.36)

*Whenever double signs appear in this section, the upper sign will hold at L 2, and the lower sign at L 1.
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(Thepositionvectorrelativeto thelibrationpointis r L -- xi + yj + zk.) Differentiation of Equation 2.36

yields the velocity vector (relative to the larger mass)

The position vector for the smaller finite body is

R = (1 + p)i. (2.38)

For a satellite of unit mass, the kinetic energy is T = _f • _, and the effective potential energy (for

motion relative to the larger mass) is given by

(I- _) i •

rl 2 (i + p) 2 '
(2.39)

where

and

r22 =[YL(I + p)±x] 2+ y2 + z2.

(2.40)

(2.41)

Forming the Lagrangian L -- T - U, standard manipulations lead to the equations of motion

k'- 2(1 + _)_ + (I -+YL)P'- py = (i + u)2_l -+TL)(I + p) + x]

(li')I x]r3 1 + yL)(1 + p) +

¥ _3 [YL (1+ P)-+x 1
r2 [

y+ 2(1+ v)[(1 + yL)#+ :_]+ 6[.(I + yL)(1 + p)+ x]

It

(I + p)2'

(2.42)

and

F(l - _) + _l ,

_ _]
f--z

_= Lr_ +r •

Expanding Equation 2.42 in a power series* including third-order terms, a moderate amount of algebra leads to

*The complete series converges in a region that is common to the interiors of two spheres. One sphere is centered
at 1 -/z and has a radius of _/2(1 + "YL)(1 + p); the other is centered at /z and has a radius of _-{'YL(1 + p).

12



and

where

k'- 2(1 + .)_ : E(1+ .)2 + 2(1+ p)-sBL]x + _y

_c,_(1 + p)-4[2x2- (y2+ z2)_

÷2 L(1÷p)-512x2- 3(y2÷z2)]x

- (l ± YL){_- (X + p)-2[(l + v)2(l + p)3 -1]},

y + 2(1 + v):_ : - _X +[(1 + _,)2 _ (1 + p)-3BL]Y ± 3CL(1 + p)-4xy

-2DL(1 + p)-514X2-(y2+z2)]Y

- (1 ±yL)[2(1÷ _)_+ (1 + p)_],

(2.43a)

(2.43b)

= - (1 + p)-3BLZ +-3CL(1 + p)-4xz

-3DL(I+p)-5[4x2-(y2+z2)]z, (2.43c)

and

(1 - g) +4], (2.44)

B L =-L(1-+- Y_L) 7 L.J

CL___[____+ (l-t0 I (2.45)

- _ ±yL)4J'LyL

(2.46)

In Reference 23, it is shown that B L > 1 for all values of/z. For it << 1, Equations 2.30 and 2.31 show that

/z Y 3y 3. In this instance, the coefficients defined in Equations 2.44 to 2.46 are B L _4, C L _=3/YL, and

DL _ _/y_.

The accuracy of the derivation can be checked by verifying that the L 1 and L 2 points are equilib-

rium solutions in the elliptical case. For this to be true, the expressions for p and _ given in Equations 2.5

and 2.6 must vanish when they are substituted into the final terms of Equations 2.43a and 2.43b. Restrict-

ing this verification to the linear terms, it is only necessary to have

3p-_+2v=0
and (2.47)

2_+5=0.

It can be seen by inspection that the linear eccentricity terms of Equations 2.5 and 2.6 satisfy Equation 2.47.

A linearized version of Equation 2.43 is sufficient for many applications. If the quantities p and

are also neglected, Equation 2.43 reduces to

13



and

- 2_- (2BL+ l)x--O,

Y + 2:_ + (B L - l)y= O,

+ BLZ = O.

(2.48a)

(2.48b)

(2.48c)

It is readily seen that the motion perpendicular to the xy-plane is simple harmonic with frequency y/_r.

The motion in the xy-plane is coupled, and the characteristic equation is given by

s 4 - (B L - 2)s 2 - (2B L + 1)(B L - 1) -- 0. (2.49)

This equation possesses two real roots, equal in magnitude, but opposite in sign. The two remaining roots

are pure imaginaries. Because a positive real root exists, the coil±near points are unstable.

2. Equilateral-Triangle Points

The geometry for satellite motion in the vicinity of the equilateral-triangle points is shown in

Figure 2.3. Equations 2.33, 2.34, 2.35, and 2.38 are still valid for this section, and the position and

velocity vectors relative to the larger body are*

r = (1 + p) + i + -_-(1 + p) + j + zk (2.50)

and

+ ±To+_+(l+v) (1+0)+ j+ek. (2.51)

1.
(The position vector relative to the libration point is r L = xi + yl + zk.) The kinetic energy T =-_r • t and
effective potential energy

where

and

(1 - _)
U-

r 1 r 2 (i + p)2
(2.52)

r_: (i+p)+ + y(i+p)+ +z 2

r_: (l+p)+ + ±-_-(l+p)+ +z 2,

(2.53)

(2.54)

are used to form the Lagrangian L :- T - U, which leads to the equations of motion

*Whenever double signs appear in this section, the upper sign will hold at L 4, and the lower sign at L 5.

14



- 2(1 + v)_ = ----_± X/3(l + v)_ --_-(I + p)z)+ (1 + p)(l + v)2

+(l+.)ex+_y (1-v)[_ x]r-_ (1 + p) +

r_ (1 + p) + (1 + p) 2'

_.. __ 45Y + 2(1 + _)_ = T Tp - (1 + ,_)#- (1 + p),) _+-E(i + p)(i + ,,)e

L,i
and

_=- (1_/_) r z.
r 1

A power series expansion* of Equation 2.55 including terms up to the third order is given by

_- 2(l + v)fz= [(l + v)2-1(1+ p)-8]x + [i,± 3-_-_48(1- 2#)(l + p)-S]y

+(1+'<')-41-e-lL_(1- 2#)x2.r--a-_xy-_(laa_2,,.).>,_+{-(,- 2v),2]

--5[-37 3 75 123 2- 45

a _ 15V_yz_] 1.. v7
+_-xz _+ 8 J -_P -+V-a(1 + _,),__+-EO + p),)

2i(i+ P)-_E1 -(1 + p)3(1 + v) 2]

,+2(1+ v')R = [+-3-_---(1- 2/,)(1 + Q)-8- b]x + {(1 + v)2 +{(1 + p)-3}y

-(1 + p)-4 _ 1-_-_/-3-x2 +-_-(1- 21x)xy+_-_.V_y2-T-Vz2 ]

-(l+p)-5 025 123 2 135-_v_(i - 2_)x 8 - -_-x r T -_-v{(1 - 2v)xr e

__ aa 27 v_..
3 y3 T-_X/-3-(1 - 2t,)xz 2 -Tyz ] T _-p - (1 + _,)1532

-i(i + p),>-T--g(i + p)-e - (i + p)a(i + ,,) ,

*The complete series converges in a region that is common to the interiors of two spheres of radii _-2(1 + p).
These spheres are centered at 1-tz and/z.

(2.55)

(2.56a)

(2.56b)
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and

_=-(l + p)-3z +3(l + p)-4fl-2#)x + _yJz

- (1 + p)-5 x 2 -+ X/3(1 - 2/_)xy + _-y - Z Z. (2.56c)

Some confidence can be put in the accuracy of this result because the eccentricity check of the previous

section again leads to the conditions given in Equation 2.47.

If p = v = 0 and only linear terms are retained, Equation 2.56 is reduced to

- 2_ --_x _--(1 -2_)y = o, (2.57a)

and

+ 2:¢ ¥ (1 - 2/x)x _9y = 0, (2.57b)

+ z = 0. (2.57c)

The coupling of x and y in Equations 2.57a and 2.57b can be eliminated by a coordinate rotation. This sim-

plification will be useful when feedback controls are considered in a later chapter. The angle for this rota-

tion is conveniently determined by expanding the modified potential function to second order (this is suffi-

cient for linearized equations of motion) and then eliminating the xy-term that causes the coupling. The

modified potential function to second order is written as

W-To-U:- _ + + ---{-+ - U

3

- -2 Z .
(2.5s)

It is readily verified that the xy-term of Equation 2.58 can be removed by utilizing the coordinate transforma-

tion (see Figure 2.3)*

X = X' COS ¢ - y' sin 0,

and

where

y = x' sin 0 + Y' cos 0,

Z = Z I,

tan 20 = T x/if(1 - 2/_).

With this transformation, Equations 2.58 and 2.57 become

(2.59)

(2.60)

2W = (8 - _) + aX '2 + /_y,2 _ Z,2 (2.61)

*The barycenter lies on the x'-axis.
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and
_' - 2_' - ax' = O, (2.62a)

and

where

and

y' + 22' - fly' -- 0, (2.62b)

_' + z' = 0, (2.62c)

a =3[_1+ _/1- 3_(1- #)] (2.63)

fi=311-_/1-3_(1-/01. (2.64)

It can be seen at once that Equation 2.62c is simple harmonic with unit frequency. It is also worth noting

that for _ << 1, a _ 3 - 9_/4 and fi % 9_/4.

The stability of the linearized equations of motion can be examined by writing the characteristic

equation for the gyroscopically coupled portion of Equation 2.62

or in terms of the mass parameter

s 4 + s 2 + aft = 0 (2.65a)

s 4 + s 2 +_(1 - _) : 0. (2.65b)

The roots of this equation are pure imaginaries if _ < 0.03852 .... and the system is neutrally stable.

/_ > 0.03852 .... the roots are complex with one pair possessing positive real parts, and the system is

unstable.

For

3. Isosceles-Triangle Points

If a satellite moving in the mutual gravitational field of two finite bodies is equipped with a con-

tinuous thrust device, it is possible to artificially generate new equilibrium positions. This generalized

libration-point concept was introduced by Dusek (Reference 4), who developed general conditions for the

existence of these points and examined the stability of a variable thrust satellite in their vicinity. In this

section, the equations of motion of a satellite at the generalized points that form an isosceles triangle with

the two finite bodies are derived. This case was not explicitly treated by Dusek.

The geometry for a general isosceles-triangle point is given in Figure 2.4. Proceeding in the same

manner as in the two previous sections, the position and velocity vectors are

r= [(1+ p)cos 0+ x]i+ [(1+ p)sin 0+ ylj + zk , (2.66)

and

_={_cos O+_- (l + v)_(l + p) sin O+ y]}i
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Figure 2.4-Isosceles-triangle point.

The potential energy is

where

and

V z
(i - _)

r1

2 (1 + p)2 '

r_=[(l+ p) cos 0+ x] 2

+[(l+p) sin0+yJ2+z 2

r_= [(1+ p)(cos0-1)+ x] 2

+ [(1 + p)sin 0+ y]2 + z2.

(2.68)

(2.69)

(2.70)

This time, the equations of motion are augmented with a planar thrust acceleration (Fcx, Fcy ) and are given
by

-2(1+ v)y=-_cos 0+2(1+ v)_sin 0+(1 +p)Psin 0+(l+p)(l+v) 2cos 0

fo+ (1 + .)2x + 5y --- o---_) 1
r 1 + p) cos 0 + x]

r_ l+o)(cosO-1)+ (l+o) 2

and

with

y + 2(1 + v)2 = - _ sin O- 2(1 + v)_ cos O- (1 + p)/, cos 0 + (1 + p)(1 + v) 2 sin 0 (2.71)

- f,x+(1 + v)2y-

F(1 -/z) + _lz '

F(1-/z)+_3-][(1 0 y] Fcy,
L r8 r_JL + p) sin + +

F c =-Fcxi + FcyJ. (2.72)

From Equation 2.71, it can be verified that the isosceles-triangle point is an equilibrium solution if*

[0F c = F c sm_l + cos_ ,

where

(2.73)

*Equations 2.73 and 2.74 are true so long as p and u are functions of the eccentricity only. In this case,
- (1 + p)-2[(1 + u)2(1 + p)S _ 1] = 0 and 2(1 + _,)p+ (1 + p)_ = 0. If p and u also depend on gravitational perturbations

from other bodies, these relations no longer hold, and Equations 2.73 and 2.74 will be more complicated.
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tlt2 lcos0 sJ fFc 2(1 + p)2(1 - cos 0)
(2.74)

In Figure 2.4, it can be seen that this thrust vector is radial with respect to ft. Therefore, a simple coordi-

nate rotation to the (x', y', z') system will uncouple the thrust acceleration terms in Equation 2.71. Inspec-

tion of Figure 2.4 shows that this coordinate rotation is

0 0
x -- x' cos-_- y' sin_-

and (2.75)

y= x' sinO+ y' cos O.

Taking p -- v = 0, and using Equations 2.72 to 2.75, Equation 2.71 is expanded in a power series* in the (x',

y', z') coordinates. Retaining only linear terms, Equation 2.71 becomes

)_' - 2_' - hl(#, O)x' -3[(1- tO sin O]y' = O, (2.76a)

and

where

)_' + 2_' -3[(_l - t_) sin O]x' - h2(l_, O)y' = O,

_' + hs( #, O)z' =- O,

hl(/_, O) --- (l+cos 0)- +3cos 0+2 (1-cos ,

(2.76b)

(2.76c)

(2.77)

and

h2(#, 0)-3(1-cos O)-2{1-3 cos 0-412(1-

h3( #, 0)-1+/_{[2(1- cos 0)]-3/2 - 1}.

cos0)]3J2}
(2.79)

The coefficients depending on/_ and 0 in Equation 2.76 are shown as functions of 0 in Figures 2.5 and 2.6.

Figure 2.5 is drawn for the Earth-Moon system (# = 0.0121507), and Figure 2.6 gives the coefficients for the

Sun-Earth system (tL = 3.9404 × 10-6). The thrust accelerations in Earth gravity units (g =- 9.81 m/sec 2) for

these two systems are given in Figures 2.7 and 2.8.

Because the out-of-plane motion is once again simple harmonic, the characteristic equation for the

coupled portion of Equation 2.76 is used to determine linear stability. This characteristic equation can be

written in the form

s4+[4-(hl + h2)]s2 + hlh2-9(1- /t)2 sin 2 0=0. (2.80)

*The region of convergence for this series is again a region that is common to the interiors of two spheres centered
at 1-t_and/_. The sphere at 1-_has aradiusof V_, and the sphere at/_has aradius of 2_/1- cosS.
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Figure 2.5-Coefficients for an isosceles-triangle point in
the Earth-Moon system.
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Figure 2.6-Coefficients for an isosceles-triangle

point in the Sun-Earth system.
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Figure 2.7-Thrust acceleration for an isosceles-

triangle point in the Earth-Moon system.
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Figure 2.8-Thrust acceleration for an isosceles-triangle

point in the Sun-Earth system.

For a fixed value of #, all of the roots of Equation 2.80 are pure imaginaries when P > Pc' and the system is

neutrally stable. When P < Pc, the motion is unstable. The approximate values of Pc for the Earth-Moon and

Sun-Earth systems are 38.9 ° and 2.45 °, respectively.

4. Stability of the Linearized Equations of Motion in the Elliptic Case

In the three previous sections, the linear stability investigation was limited to the special case,

p -- _ = 0. For a more realistic situation, where the two finite bodies describe elliptic orbits, the linearized

equations of motion possess periodic coefficients, and the stability test is more involved. A brief summary
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of someresultsfor this problemis givenbelow. Theresultsof Bennett(References24 and 25) are quoted

here for he has investigated all five of the classical libration points. It should be noted that the stability

results for the equilateral-triangle points were originally found by Colombo et al. (Reference 26) for the

Earth-Moon system, and later by Danby (Reference 27) for the general case.

In his first paper, Bennett (Reference 24) used Floquet theory to examine the stability of the five

classical libration points. For the collinear points, he found that the degree of instability increased with

larger eccentricity. His results for the equilateral-triangle points are shown in Figure 2.9.

Bennett's second paper (Reference 25) gives an analytical method for finding a characteristic root

A as a power series in the eccentricity; i.e., h :- ho + Ale + h2e2 + .... where ho is the root for the circular

problem. This paper proves that h 1 -: 0, which shows that the first correction to a characteristic root is pro-

portional to the square of the eccentricity. For most of the systems considered in the present research, the

correction will be very small and will usually be neglected.

C. Numerical Data for Some of the Collinear Points in the Solar System

In this section, numerical data for the L 1 and L 2 points of several Sun-planet and planet-satellite con-

figurations are presented. These data will be needed to apply general results to certain Solar System points.

It is important to note that although the derived parameters are given with several significant figures for

consistency, their accuracy is really limited by the errors in the adopted constants.

1. Mass-Ratio Dependent Quantities

The derived constants in Tables 2.1 to 2.6 depend on only one physical parameter, the mass ratio

of the two finite bodies. The values for the mass ratios listed in column 1 of Tables 2.1 and 2.2 were

obtained from Reference 28* with the exception of

,o the following:

O.S

0.6

o

b-
G

0.4

0.2

0 I
0 0.08 0.10

03852
0.02 }¢ 0.04 0.06

o.o28595-/

MASS PARAMETER, /_

Figure 2.9-Stability chart for the equilateral-triangle

points (Reference 24). Stable region is crosshatched.

*Original sources are given in this reference.

(1) Mercury: This constant is so poorly

known that three values are used here to bracket its

probable range. Recent estimates can be found in

References 29 to 31.

(2) Venus: Mariner 2 data (Reference 32).

(3) Earth: NASA Ad Hoc Standards Com-

mittee (Reference 33).

(4) Earth + Moon: Derived from adopted

values for M®/M+ and M_/M.
(5) Mars: Mariner 4 data (Reference 34).

(6) Moon: Mariner 2 data (Reference 32).

Columns 3 and 4 of Tables 2.1 and 2.2 were obtained

directly from Equations 2.27 and 2.28, respectively.
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Table 2.l-Mass parameters and distance ratios for Sun-planet systems.

1 2 3 4

Planet Mass ratio

(%/%) yLI yL2

Mercury - 1

Mercury - 2

Mercury - 3

Venus

Earth

Earth + Moon

Mars

Jupiter
Saturn

Uranus _'

Neptune

5.5 x 106

6.0 x 106

6.5 x 106

4.0859 x 105

3.32951 x 105

3.28906 x 105

3.098 x 106

1.04736 x 103

3.4997 x 103

2.29 x 104

1.889 x 104

1.8182 x 10 -7

1.6667 x 10 -7

1.5385 x 10 -7

2.4474 x 10 -6

3.0034 x 10 -6

3.0404 x 10 -6

3.2279 x 10 -7

9.5387 x 10 -4

2.8566 x 10 -4

4.3666 x 10 -5

5.2935 x 10 -5

3.9229 x 10 -3

3.8109 x 10 -3

3.7106 x 10 -3

9.3148 z 10 -3

9.9704 x 10 -3

1.0011 x 10 -2

4.7487 x 10 -3

6.6680 x 10 -2

4.4962 x 10 -2

2.4216 x 10 -2

2.5806 x 10 -2

3.9331

3.8206

3.7198

9,3730

1.0037

1.0078

4.7640

6.9784

4.6351

2.4613

2.6258

z 10 -3

x 10 -3

x 10 -3

x 10 -3

z 10 -2

x 10 -2

x 10 -3

x 10 -2

× 10 -2

× 10 -2

x 10 -2

Table 2.2-Mass parameters and distance ratios for planet-satellite systems.

1 2 3 4

Satellite Mass ratio

_ l _(Msat/Mp_ # YL 1 YL2

Moon

Io

Europa

Ganymede
Callisto

Mimas

Enceladus

Rhea

Titan

Triton

81.30* 1.21507

3.81 x 10 -5 3.8099 x

2.48 z 10 -5

8.17 x 10 -5

5.09 x 10 -5

6.68 z 10 -8

1.51 x 10 -7

4 x 10 -6

2.48 x 10 -4

1.28 x 10 -3

× 10 -2

10-5

2.4799 x 10 -5

8.1693 × 10 -5

5.0897 x 10 -5

6.6800 x 10 -8

1.5100 x 10 -7

4.0000 × 10 -6

2.4794 x 10 -4

1.2784 x 10 -3

0.150935

.023148

.020083

.029781

.025474

.0028107

.0036877

.010966

.042920

.073339

0.167833

.023511

.020355

.030385

.025914

.0028160

.0036967

.011047

.044184

.077111

In Tables 2.3 and 2.4, columns 1 and 2 were computed from Equation 2.44, and columns 3 and 4

were found by using Equation 2.45. The coefficient D L defined in Equation 2.46 was not included in this

table because B L and C L are sufficient for most applications. However, some representative values for

D L are

(1) Earth + Moon: DL1 = 30240 DL2 = 29243.

(2) Moon: DL1 = 157.355 DL2 = 91.7003.
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Table2.3-Constantsfor equationsof motionfor Sun-planet
systems(seeEquation2.43).

Planet

Mercury- 1
Mercury- 2
Mercury- 3
Venus
Earth
Earth+ Moon
Mars
Jupiter
Saturn
Uranus
Neptune

BL 1

4.0237

4.0230

4.0224

4.0568

4.0608

4.0611

4.0287

4.4462

4.2905

4.1512

4.1616

BL 2

3.9766

3.9772

3.9778

3.9446

3.9408

3.9405

3.9716

3.6228

3.7412

3.8580

3.8489

CL I

766.74

789.23

810.48

324.07

302.89

301.67

633.75

46.933

68.699

125.88

118.24

4

CL 2

760.75

783.22

804.48

318.07

296.89

295.67

627.75

40.984

62.721

119.89

112.25

Table 2.4-Constants for equations of motion for planet-satellite

systems (see Equation 2.43).

1 2 3 4

Satellite

BL 1 BL 2 CL 1 CL 2

Moon

Io

Europa

Ganymede
Callisto

Mimas

Enceladus

Rhea

Titan

Triton

5.14760

4.1443

4.1246

4.1877

4.1594

4.0169

4.0223

4.0670

4.2764

4.4960

3.19042

3.8642

3.8818

3.8263

3.8508

3.9832

3.9780

3.9349

3.7525

3.5873

21.5117

131.59

151.38

102.72

119.76

1069.4

815.53

275.57

71.876

42.835

15.8451

125.60

145.38

96.734

113.77

1063.4

809.52

269.57

65.896

36.898

The roots of the characteristic equation at L 1 and L 2, Equation 2.49, are listed in Tables 2.5 and

It should be recalled that the two pairs of roots for each point are equal in magnitude, but opposite in

2. Conversion Factors for Normalized Units

Because virtually all general results will be presented in the normalized units that were introduced

in Section A.1 of this chapter, a set of conversion factors will be needed to apply these results to specific
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Table2.5-Rootsof characteristicequationfor Sun-planetsystems
(seeEquation2.49).

Planet

Mercury- 1
Mercury- 2
Mercury- 3
Venus
Earth
Earth+ Moon
Mars
Jupiter
Saturn
Uranus
Neptune

1 2 3

Rootsfor L1

Real

2.5178

2.5175

2.5173

2.5309

2.5326

2.5327

2.5198

2.6811

2.6222

2.5682

2.5723

Imaginary

2.0774

2.0772

2.0771

2.0854

2.0864

2.0865

2.0786

2.1777

2.1413

2.1082

2.1107

Roots for L 2

Real

2.4989

2.4991

2.4994

2.4860

2.4844

2.4843

2.4969

2.3521

2.4022

2.4507

2.4469

Imaginary

2.0659

2.0660

2.0662

2.0580

2.0571

2.0570

2.0647

1.9772

2.0073

2.0366

2.0343

Table 2.6-Roots of characteristic equation for planet-satellite

systems (see Equation 2.49).

Satellite

Moon

Io

Europa

Ganymede
Callisto

Mimas

Enceladus

Rhea

Titan

Triton

1 2

Roots for L 1

3 4

Roots for L 2

Real Imaginary Real Imaginary

2.93206

2.5655

2.33439

2.1065

2.15867

2.4532

1.86265

2.0381

2.5577

2.5824

2.5714

2.5151

2.5172

2.5350

2.6167

2.6997

2.1018

2.1169

2.1102

2.0757

2.0770

2.0879

2.1380

2.1892

2.4604

2.4376

2.4477

2.5015

2.4994

2.4820

2.4069

2.3368

2.0425

2.0287

2.0348

2.0675

2.0662

2.0556

2.0102

1.9681

systems. The conversion factors for length and angular rate are listed in columns 1 and 3 of Tables 2.7 and

2.8. Manipulation of these two constants leads to the conversion factors for time, velocity, and acceleration

given in Tables 2.9 and 2.10. To convert a normalized quantity to ordinary units, multiply by the appropri-

ate factor. For example, if the normalized acceleration of an artificial satellite in the Earth-Moon system is

given as F -- 1.186 x 10 -4, use of Table 2.10 gives

F = (1.186 x 10 -4 ) × (2.77611 x 10-4g) = 3.292 x 10-8g.

24



Table2.7-Orbitalconstantsfor Sun-planetsystems.

la ib 2 3

axisPlanet

Mercury
Venus
Earth+ Moon
Mars
Jupiter
Saturn
Uranus
Neptune

Semimajor
a

(AU)*

O.387099

.723332

1.000000

1.523691

5.203705

9.580337

19.14103

30.19825

(km)

5.7910 x 107

1.0821 x 108

1.4960 x 108

2.2794 x 108

7.7847 x 108

1.4332 x 109

2.8635 x 109

4.5176 x 109

Eccentricity
e

0.20563

.00679

.01673

.09337

.04863

.05099

.04579

.00456

Mean motion

n

(rad/sec)

8.2668 x 10 -7

3.2364 x 10 -7

1.9910 x 10 -7

1.0586 x 10 -7

1.6780 x 10 -8

6.7152 x 10 -9

2.3775 x 10 -9

1.1998 x 10 -9

*AU = 1.49599 x l0 s kin, Mariner 2 data (Reference 32).

Table 2.8-Orbital constants for planet-satellite systems.

1 2 3

Satellite

Moon

Io

Europa

Ganymede

Callisto

Mimas

Enceladus

Rhea

Titan

Triton

Mean distance

from planet

a

(km)

3.84405 x 105

4.216 x 105

Eccentricity
e

0.05490

.0000

Mean motion

n

(tad/see)

2.66170 x 10 -6

4.1106 × 10 -5

6.708 x 105

1.070 × 106

1.882 x 106

1.854 x 105

2.379 × 105

5.267 x 105

1.221 x 106

3.534 × 105

.0003

.0015

.0075

.0201

.00444

.00098

.02890

.000

2.0478 x 10 -5

1.0164 x 10 -5

4.3575 x 10 -6

7.7165 x 10 -5

5.3073 x 10 -5

1.6098 x 10 -5

4.5607 x 10 -6

1.2374 x 10 -5

Multiplication of the distance ratios in Tables 2.1 and 2.2 by the appropriate length factor fur-

nishes the values in columns 1 and 2of Tables 2.11 and 2.12, which give the mean distances between the

center of the smaller finite body and the collinear points. Comparison of columns 2 and 3 for the planet-

satellite systems shows that the L 1 and L 2 points are sometimes located very close to the satellite's sur-

face. The variation of the libration-point distance because of the orbital eccentricity is given for a few

systems in columns 1 to 4 of Table 2.13.
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Table2.9-Conversionfactorsfor normalizedunits for Sun-planetsystems.

Planet

Mercury
Venus
Earth+ Moon
Mars
Jupiter
Saturn
Uranus
Neptune

Time
(days)

14.001
35.762
58.132

109.34
689.73

1723.6
4868.1
9646.7

Velocity
(m/sec)

4.7872x 104
3.5021x 104
2.9785x 104
2.4130x 104
1.3063x 104
9.6243× 103
6.8081× 108
5.4202× 103

3 4

Acceleration

(m/sec2)

3.9575x 10-2
1.1334x 10-2
5.9301x 10-3
2.5543x 10-3
2.1920x 10-4
6.4629x 10-5
1.6187x 10-5
6.5031x 10-6

(g)

4.0342 x 10 -3

1.1554 x 10 -3

6.0450 × 10 -4

2.6038 × 10 -4

2.2345 × 10 -5

6.5881 x 10 -6

1,6500 x 10 -7

6.6291 x 10 -8

Table 2.10-Conversion factors for normalized units for planet-satellite systems.

1 2 3 4

Satellite Acceleration

Moon

Io

Europa

Ganymede
Callisto

Mimas

Enceladus

Rhea

Titan

Triton

Time

(days)

4.34888

.28157

Velocity

(m/sec)

1.02317 x 103

1.7330 x 104

(m/sec 2)

2.72336 x 10 -3

7.1237 x 10 -1

(g)

2.77611 × 10 -4

7.2617 x 10 -2

.56519

1.1387

2.6561

.14999

.21808

.71898

2.5378

.93533

1.3737 x 104

1.0876 x 104

8.2008 x 103

1.4306 x 104

1.2626 x 104

8.4787 x 103

5.5686 x 103

4.3731 x 103

2.8131 x I0 -I

1.1055 x I0 -I

3.5735 x 10 -2

1.1040

6.7011 x I0 -I

1.3649 x i0 -I

2.5396 x 10 -2

5.4114 x 10 -2

2.8675 x 10 -2

1.1269 x 10 -2

3.6427 x 10 -3

1.1253 x 10 -1

6.8309 x 10 -2

1.3913 x 10 -2

2.5888 x 10 -3

5.5162 x 10 -3

3. Comparison of L 2 Distance and Extent of Planetary Shadow

It is interesting to compare the distances of the apex of a planet's shadow cone and its L 2 point.

The mean distance between a planet and the apex of its geometrical shadow cone is given by

a (2.81)
ds - (R(b/Rp - I)'

where a is the semimajor axis of the planet's orbit, Rp is the planet's radius, and R_ = 6.957 x 105 km

(Reference 28). Equation 2.81 was used to compute the planetary shadow distances given in column 4 of
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Table2.11-Distancebetweenthesmallerfinite bodyanda collinearpoint
for Sun-planetsystems.

la Ib 2a 2b

Meandistancebetween MeandistancebetweenPlanet
planetandL 1 planet and L 2

(AU) (km) (AU) (km)

Mercury - 1

Mercury - 2

Mercury - 3
Venus

Earth

Earth + Moon

Mars

Jupiter
Saturn

Uranus

Neptune

0.001519

.001475

.001436

.006738

.009970

.010011

.007236

.34699

.43075

.46352

.77931

2.2717 x 105

2.2069 x 105

2.1488 x 105

1.0079 x 106

1.4916 x 106

1.4976 x 106

1.0824 x 106

5.1909 x 10 7

6.4439 x 107

6.9342 × 107

1.1658 x 108

0.001523

.001479

.001440

.006780

.010037

.010078

.007259

.36314

.44406

.47112

.79295

2.2777 x 105

2.2125 x 105

2.1541 x 105

1.0142 x 106

1.5015 x 106

1.5077 x 106

1.0859 x 106

5.4325 x 107

6.6431 x 107

7.0480 x 107

1.1863 x 108

Table 2.12-Distance between the smaller finite body and a collinear

point for planet-satellite systems.

Satellite

Moon

Io

Europa

Ganymede
Callisto

Mimas

Enceladus

Rhea

Titan

Triton

1 2 3

Mean distance

between satellite

and L 1
(km)

58020

9759

13471

31866

47942

521

877

5776

52405

25918

Mean distance

between satellite

and L 2
(kin)

64516

9912

13654

32511

48770

522

879

5818

53 949

27251

Radius of

satellite

(kin)

1738

1620

1415

2450

2285

35O?

<470

675

2475

2250

Table 2.14. The assumed values for the planetary radii listed in column 1 were obtained from Reference 28

with the exception of the following:

(1) Mercury: Reference 35.

(2) Venus: Reference 36.

(3) Mars: Mariner 4 data (Reference 37).
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Bycomparingcolumns3 and4of Table2.14",it canbeseenthatthe L 2 point is located beyond the plane-

tary shadow cone for Mercury, Venus, and Earth. To an observer placed at any of the L 2 points for these

planets, the Sun would always be partially eclipsed. At the L 2 points of Mars, Jupiter, Saturn, Uranus, and

Neptune, the Sun is totally eclipsed (neglecting atmospheric refraction). A "critical" planetary radius,

which would make the length of the planetary shadow equal to the L 2 distance, is given in column 2.

Table 2.13-Distance variation between the s_maller finite body and a collinear point.

I* 2* 3* 4*

Body

Moon

Mercury - 2

Earth + Moon

Mars

Jupiter

Min. distance

between body

and L 1
(km)

5.4835 x 104

1.7531 x 105

1.4726 x 106

9.8137 x 105

4.9384 x 107

Max. distance

between body

and L 1
(km)

6.1205 x 104

2.6607 x 105

1.5227 x 106

1.1835 x 106

5.4433 x 107

Min. distance

between body

and L 2
(km)

6.0974 x l0 s

1.7576 x 105

1.4825 x 106

9.8449 x 105

5.1683 x 107

Max. distance

between body

and L 2
(km)

6.8058 x 104
2.6674 x 105

1.5329 x 106

1.1873 x 106

5.6967 x 107

*dmi n = d(1 - e), dma x = d(1 + e).

Table 2.14-L 2 distance and extent of planetary shadow.

1 2 3 4

Planet

Mercury - 1

Mercury - 2

Mercury - 3
Venus

Earth

Earth + Moon

Mars

Jupiter
Saturn

Uranus

Neptune

Mean radius

of planet

(km)

2480

2480

2480

6120"

6371

6371

3390

69750

58170

23750

22400

Critical radius

of planet

(km)

Mean distance

between planet

and L 2
(km)

Mean distance

between planet

and apex
of shadow

(km)

*Radius taken to top of cloud la

2725.6

2647.8

2578.3

6460.2

6913.4

6941.4

3298.5

45382.0

30818.1

2.2777 x 105

2.2125 x 105

2.1541 x 105

1.0142 x 106

1.5015 × 106

1.5077 x 106

1.0859 x 106

5.4325 x 107

6.6431 x 107

2.0717 x 105

2.0717x 105

2.0717 x 105

9.6036 × 105

1.3826 x 106

1.3826 x 106

1.1162 x 106

8.6745 x 107

1.3077 x 108

1.0121 x 108

1.5030x 108
16712.2

17 800.5

7.0480 x 107

1.1863x 108

Ter.

*A comparison of the mean distances is sufficient because both distances fluctuate in the same manner for
elliptical orbits.
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PERTURBATIONS

CHAPTER III

AND NOHINAL PATH CONTROL

The restricted three-body model for the motion of a libration-point satellite is an idealization of the true

physical situation. A more realistic model must account for the gravitational perturbations of other bodies

and solar radiation pressure. In this chapter, the effect of these disturbances on a libration-point satellite

is considered in some detail. Quantitative results are given for a few specific cases, and the concept of

nominal path control is introduced.

A. Additional Accelerations Acting on a Libration-Point Satellite

1. Gravitational Perturbations

The analysis of the motion of a libration-point satellite is more intricate when gravitational pertur-

bations of another finite body are introduced. The addition of this fourth body affects the motion of the

other finite bodies, as well as the satellite, and great care must be taken to use a proper mathematical

model. A recent discussion of certain models for a "restricted four-body problem" has been given by Mohn

and Kevorkian (Reference 38).

When Brown and Shook (Reference 39) calculated the perturbations of a Trojan asteroid* by Saturn,

they found that the indirect effect produced by Saturn in altering Jupiter's motion was greater than its direct

effect. This case is typical of perturbations of this type, and the examples given below show that direct

and indirect effects are usually comparable.

2. Solar Radiation Pressure

The magnitude and direction of the acceleration caused by solar radiation pressure is somewhat

random for a nonoriented satellite with an odd geometrical shape and variable reflectivity, absorptivity, and

transmissibility properties. However, for an attitude-controlled satellite with a simple configuration and

uniform surface properties, the variation of this acceleration is largely predictable. Although this chapter

views radiation pressure as an undesirable perturbation, it will be seen in Chapters V and VI that this effect

could be used advantageously for satellite position control.

The magnitude of the acceleration acting on a plane surface of mass m is given by$

*The Trojan asteroids are located in the vicinity of the equilateral-triangle points of the Sun-Jupiter system.
"Ht is assumed that the incident solar radiation is perpendicular to the plane surface.
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(3.1)

where p_ is the solar pressure at 1 AU from the Sun (using the solar constant given in Reference 12, p@ =

4.50 × 10 -6 newtons/m2), d s is the distance from the Sun in AU, A s is the area of the plane surface, and Cp

is a coefficient that depends on the surface properties. For a perfect absorber (black body), Cp = 1, while a

value of Cp = 2 corresponds to a perfect reflector. The area-to-mass ratios range from about 0.001 m2/kg

for a very dense satellite to 0.1 m2/kg for a satellite with very large solar panels. Assuming an average

value of (As/m) = 0.01 m2/kg and taking Cp = 2, d s = 1 AU, the acceleration from radiation pressure is

roughly Kp = 9.17 × 10-9g.

3. Thrust Control

Satellite position control is usually achieved with low-thrust devices. These devices could be

cold-gas jets, ion thrustors, or some other suitable system. The thrust may be applied either continuously

or discontinuously, depending on the control requirements. Detailed analyses of the controlled motion of a

libration-point satellite are presented in the remaining chapters.

B. Control About Nominal Path

Although the concept introduced in this section is applicable to all the libration points, the discussion

here will be limited to the collinear points. The modification of this technique for the other points is

straightforward.

1. Basic Strategy

The addition of perturbation and control terms to the linearized equations of motion at the collinear

points, Equation 2.48, gives

Y, - 2_ - (2B L + 1)x = Px(t) + F cx, (3.2a)

and

)i + 2f_ + (B L - 1)y = Py(t) + Fcy,

+ B LZ= Pz(t)+ Fcz ,

(3.2b)

(3.2c)

where P(t) is a periodic perturbing acceleration and F c is a control acceleration. Because of the natural

instability of a satellite in the vicinity of a collinear libration point, some thrust control for station keeping

will always be necessary. Additional thrust control could be used to cancel the perturbing acceleration.

However, it is more economical to control about a suitable periodic perturbed path. This "nominal path" is

determined by simply solving for the forced response of Equation 3.2 with F c -- 0. The forced response to a

sinusoidal input is well defined, except for exact resonance, even though the uncontrolled system, is

unstable. Denoting the nominal path by (x n, Yn, Zn) and using the coordinate transformation

_= X -- X/1 ,
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_I--Y- Yn,

and

_ = Z- Z n,

the equations of motion relative to the nominal path are

- 2_ - (2BL + 1)_ = Fox,

(3.3)

and

+ 2_ + (B L - 1)_) = Fcy,

4 + BL_ = Fcz,

(3.4)

which is identical to Equation 3.2 with P(t) absent. This result could have been stated earlier by simply

using the principle of linear superposition.

The foregoing development is an approximation that is strictly valid only so long as the nominal

path is very small. Equations of motion relative to a moderately large nominal path are derived below.

2. Periodic Orbits

It is well known that families of unstable periodic orbits can exist in the vicinity of the collinear

libration points (Reference 1). To satisfy certain mission constraints, it is sometimes necessary to insert

a satellite into one of these orbits. For moderate amplitude orbits located in the xy-plane, a good approx-

imation can be obtained from Equations 3.2a and 3.2b with P(t) -- F c = 0. If certain initial conditions are

satisfied, only the oscillatory mode is excited, and the satellite will follow a periodic orbit about the

libration point, as shown in Figure 3.1. The equations for this orbit are (Reference 1)

x n = A x sin COnt

and (3.5)

Yn = Ay cos COnt,

where

2o)/1

Ax = 2 + (2BL + 1) Ay =_kAy (3.6)
co n

PERIODIC ORBIT "-_

YL2 R "=

Y

Ay

.,I.-

Ax

Figure 3.1-Periodic orbit around a collinear point.

X

and o)n is the magnitude of an imaginary root of

Equation 2.49. It should be noted here that Equation

3.5 is only a first approximation to the true orbit,

and higher order corrections are introduced when

nonlinearities, eccentricity, and perturbations are

taken into account. The corrected orbit is still

bounded, but it is only quasi-periodic.

3. Higher Order Corrections for a Periodic Orbit

The determination of the corrections to the

orbit of Equation 3.5 is a tedious and lengthy
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process.Fortunately,thecomputationof afewhigherordertermsis usuallysufficientbecausetheremain-
ing smallaccelerationsdonotsignificantlyaddto thestation-keepingcost. In this section,onlysecond-
ordertermsareconsidered.Althoughthecorrectionsmaybequitesmall,thestation-keepingcostcouldbe
significantlyincreasedif theyaredisregarded.

Themethodof successiveapproximations(Reference40)canbeusedto determinethesecond-order
correctionto aperiodicorbitarounda collinearpoint.
canbewrittenin theform

X n -- Xnl

and

Yn = Ynl

where Xnl and Ynl are given by Equation 3.5. That is,

xnl = Axl

and

with A x 1 = kAy 1"

The equations of the corrected orbit to second order

+ xn2

+ Yn2'

(3.7)

sin cont

(3.8)

Ynl = Ayl COS coot

Substitution of Equation 3.7 into Equations 2.43a and 2.43b with P(t) included and dele-

tion of all terms higher than second order yield two coupled linear differential equations for x,, 2 and Yn2"

Ay 1, p, v, and P(t) are treated as first-order quantities, and coupling between the eccentricity and gravita-

tional perturbations is neglected. With these restrictions, the second-order effects of nonlinearity, eccen-

tricity, and perturbations can be treated separately. An analysis of this type is usually adequate for order

of magnitude estimates of the different effects.

Frequency corrections are also present and can be computed by expressing the frequency as

con = con0 + conl + con2 + .... (3.9)

Fortunately, con 1 -- 0 for the cases considered below, and the frequency is well approximated by con, = con0"

Response to a periodic input

It will be necessary to calculate the forced response to an input of the form

P(t) = K x cos (cot + ¢)i + Ky sin (cot + ¢)j.

The linearized equations of motion near a collinear point with this input are

- 2_- (2B L + l)x = K x cos (cot+C)

and (3.10)

y + 22 + (B L- 1)y= Kysin(cot+¢).

A particular solution of Equation 3.10 can be written as

Xp = A x cos (cot + g5)

and (3.11)

yp = Ay sin (cot + ¢),
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where

20) [-0)2- (2BL + 1)
Z

This result will be used rePeatedly below.

(3.12)

Nonlinear correction

Employing the procedure outlined above, it can be deduced that the differential equations for

the nonlinear correction are

Xn2 - 2Yn2 - (2BL + 1)xn2 = Cx + Kx cos 2a)nt

and (3.13)

Yn2 + 2Xn2 + (BL - 1)Yn2 = Ky sin-2cOnt,

where

and

Therefore

3 (__ 2) 2 (3.14)C x = +_C L - k Ayl,

3 (2) 2 (3.15)K x -- ±-_C L + k Ayl,

Ky : Jr3 CL karl. (3.16)

Xn2 = Xc2 + Ax2 cos 2COnt

and (3.17)

Yn2 = Ay2 sin 2a)nt,

where Ax2 and Ay 2 are computed by making use of Equations 3.10 to 3,12, and Xc2 -- -Cx/(2B L + 1). As an

example, consider the L 2 point of the Earth-Moon system. For this point, BL2 = 3.19042, CL2 = 15.8451,

_on -- 1.86265, k -- 0.34333_6, and

Cx = 9.0821 Ay21, Xc2 = -1.2305 A 2yl'

2
K x = 14.686 Ay 1, Ax2 -- -0.57443 A_I,

2 2
Ky = 8.1603 Ay 1, Ay 2 = -0.33203 Ay 1.

Choosing Ay 1 = 0.02 = 7688.1 km, these relationships give

Cx = 1.0085 x 10-6g, Xc2 = -189.20 km,
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andAxi = 0.343336 Ay 1

Kx = 1.6307 x 10-6g,

Ky -- 9.0617 × 10-7g,

= 2639.6 km.

Ax2 = -88.33 km,

Ay 2 = -51.05 km,

It should be mentioned that Plummet (References 41 and 42) has calculated the nonlinear

corrections to third order for all of the collinear points. Unfortunately, Plummer's solutions are limited to

the case where # = 1/11.

Eccentricity correction

For the eccentricity correction, the differential equations are

xn2 - 2Yn2 - (2BL + 1)Xn2 :- 2_Ynl + _Ynl + (2_' - 6BLp)Xnl

and (3.18)

Yn2 + 2xn2 + (BL - l)Yn2 : - 2W/_nl- _Xnl + (2. + 3BLp)Ynl,

where the expressions for p and v are obtained from Equations 2.5 and 2.6. Taking ¢ = 0 and neglecting

terms of O(e2), these quantities are given by

and
p -- - e cos t

: 2e COS t.

(3.19)

Using Equations 3.6, 3.8, and 3.19, Equation 3.18 becomes

and

where

!

x,2 - 2)'n2 - (2BL + 1)in2 = Kx sin (con + 1)t + Kx sin (_on - 1)t

!

Yn2 + 2xn2 + (BL - 1)Yn2 = Ky cos (o) n + 1)t + gy cos (o_n - 1)t,

Kx--el- 2c%-1+ k(3BL+ 2)lAy 1,

(3.2o)

(3.21)

and

Kx=- e[2(o n -

Ky = - e [k(2c%

: - e[k(2_,Ky
[

-I

1 - k(3B L + 2)JAy i,

+ 1) + B L - Ay l,

- 1) + B L - Ay 1.

(3.22)

(3.23)

(3.24)

The solutions can be written in the form

I

Xn2 = Ax2 sin (con + 1)t + Ax2 sin (o_n - 1)t
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and
!

Yn2 = Ay2 cos (con + 1)t + Ay 2 cos (o_n - 1)t,

(3.25)

A' A and ' are again determined by using Equations 3.10 to 3.12. Returning to the exam-and Ax2, x2' y2' Ay2

ple at the L 2 point of the Earth-Moon system (e = 0.05490), elementary calculations give

and for Ay 1 -- 0.02 = 7688.1 km,

Kx = -0.041311 Ay 1,

K_ = 0.068489 Ay 1,

Ky = -0.24200 Ay 1,

Ky = -0.20430 Ay 1,

Ax2 = 0.026893 Ay 1,

A'x2 = -0.030659 Ay 1,

Ay 2 = 0.065947 Ay 1,

t

Ay 2 = -0.10469 Ay 1,

Kx = -2.2937 × 10-Tg, Ax2 = 206.76 km,

$ !

Kx = 3.8027 × 10-Tg, Ax2 = -235.71 kin,

Ky = -1.3436 × 10-6g, Ay 2 = 507.01 km,

Ky = -1.1343 × 10-6g, Ay 2 = -804.84 kin.

A comparison shows that the amplitudes of the eccentricity corrections are much larger than the amplitudes

of the nonlinear corrections. It is shown below that these eccentricity corrections also dominate corrections

caused by the Sun's gravitational field and radiation pressure.

EHect ol gravitational perturbations and solar radiation pressure

Because the analysis of gravitational perturbations is slightly different for every libration

point, a generalized result for periodic orbit corrections cannot be given. However, specific cases are

readily analyzed, and the effect of the Sun's perturbation on a periodic orbit around a collinear point of the

Earth-Moon system is described in section C of this chapter.

A general result for solar radiation pressure is even less probable because this effect is

highly dependent on the spacecraft configuration and orientation. Nevertheless, a highly restricted example

is examined here for illustrative purposes. Consider a satellite near the L 2 point of the Earth-Moon system.

The major contribution to the satellite's cross-sectional area is given by a high-gain antenna with a diam-

eter of 3 m (A s = 7.0686 m2). If the antenna is always directed toward the Moon as shown in Figure 3.2,

then the angle _/, of the incident solar radiation will vary sinusoidally. Assuming that all of the incident

radiation is reflected specularly, the instantaneous acceleration acting on the spacecraft is (Reference 43)

Px = + Kp cos 2 ¢, (3.26)
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where Kp is given by Equation 3.1, with Cp = 2. For

a satellite mass m = 200 kg, the average accelera-

tion is IPxl -- Kp/2 = 1.62 × 10-8g. Accelerations

of this magnitude may simply be canceled by thrust

control.

4. Linearized Equations of Motion Relative

to a Nominal Path

Figure 3.2-Geometry for radiation pressure example.
A nominal path can usually be represented

as a series of successive approximations of the form

X n--xnl + Xn2 + Xn3 + ...,

and

Yn = Ynl + Yn2 + Yn3 + ....

z n = Znl + zn2 + zn3 + ....

(3.27)

where the second subscript denotes the order of the term. The equations of motion relative to the nominal

path can be found by substituting Equation 3.3 into Equation 2.43. Only terms involving the coordinates

(_=,7, _) will be present because Equation 3.27 is a solution of Equation 2.43 with P(t) included. Assuming

that p and v are negligible when compared to 3CLXnl, etc., the linearized equations of motion are

approximately*

(2 L+ ¥ Fox,

and

(3.28)

When the nominal path is very small, Equation 3.28 reduces to Equation 3.4.

For a quasi-periodic orbit, the first-order terms for the nominal path are given by Equation 3.5. If

the satellite is also performing an out-of-plane oscillation, it is obvious from Equation 2.43c that

Znl = Azl cos (O_zt + ao), (3.29)

where coz = _L and a 0 is a phase angle. Substitution of these first-order terms into Equation 3.28 gives

_-2_-(2BL + 1)_== ¥ 3CL{2EAxlsin_%tl_-[AylCOSe_nt]_?

- [Az1 cos(o)zt+ao)]_}+Fcx,

*As in Chapter II, the upper sign holds at L 2, and the lower sign at L 1.
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and

(3.30)

C. Examples of Gravitational Perturbations

1. Solar Perturbation Near the Earth-Moon Collinear Points

The effect of the Sun's perturbation on a satellite at a collinear point of the Earth-Moon system

was first investigated by Colombo (References 3 and 44). He demonstrated that, to first order, the accelera-

tion produced by the direct effect• of the Sun is completely canceled by the indirect effect of the Sun on the

Moon. A more complete derivation of Colombo's solution has been given by Nieholson (Reference 45), who

also examined the forced motion caused by the higher order terms.* It should be emphasized that Colombo's

solution is valid only at the libration point, and cannot be applied to a satellite following a periodic orbit

around the point.

To calculate the effect of the Sun's perturbation on a periodic orbit, a somewhat different approach

is advisable. The method presented in this section uses the lunar theory of De Pontecoulant to account for

the Sun's indirect effect. This method is first shown to be in agreement with Colombo's result at the libra-

tion point, and then used to determine the correction to a periodic orbit around a collinear point. Because

the mean inclination of the Moon's orbital plane to the ecliptic is only about 5°, and the eccentricities of

the orbits of the Earth and the Moon are e' -- 0.01673 and e = 0.05490, respectively, the analysis given

below will be limited to zero-eccentricity, coplanar orbits.

De Pontecoulant's expressions [or the motion o[ the Moon

A complete listing of De Ponteeoulant's results for the motion of the Moon is given in Refer-

ence 46, and an abbreviated version can be found in Reference 47. Literally hundreds of terms are involved

in these expressions, but if it is assumed that e = e' -- 0 and three-dimensional effects are neglected, the

formulas reduce to

and

1 2 331m4 Im 2 . 19m3 125 4] 3 4p = --_m +--_-_ - .--( +-_-m J cos 2cost --_m cos 4cost

2 a 25m2a
81 m l_7cos COst 3COst + O(m 5)+ [1L_m+_ --_ _-cos

[__11 85m8 539 4] 201_4u = m2 +-i2 + -_- m cos 2COst + --_ m cos 4COst

- m + m _7 cos COst +_-_m _7 cos 3COst + O(m5),

(3.31)

(8.32)

*The magnitude of the acceleration from the higher order terms is approximately 2 × 10-gg. A nominal path calcu-
lation is unnecessary here because the magnitude of this acceleration is comparable to random solar radiation pressure
effects.
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wherem is the ratio of the mean motions of the Earth and the Moon (m -- n'/n = 0.07480133), a/a' is the ratio

of the semimajor axes of the Earth and the Moon [a/a' = 0.002559 % O(m2)], _os -- 1 - m : 0.92519867, and

t = 0 corresponds to new Moon. Differentiation of Equations 3.31 and 3.32 gives

_=[2m2+l-_m3+6-_m41 sin 2O_st +3m 4 sin 4_Ost

1[___ + 33m2 ] a + 75m2 a- m _ A--a-7 sin _Ost _ _ sin 3O)st + O(m5), (3.33)

and

lI___ +51m2 _ a +225m2a- m ]-_ j_Tc°s_st _ _Tc°s3c%t+O(m5),

 0o,v= - m 2 ÷ _- + m sin 2c%t - _ m sm 4cost

+ m + m sin O)st --_m _7 sin 3o_st + O(m5).

(3.34)

(3.35)

Derivation of direct solar effect

The geometry for the direct solar perturbation in the vicinity of a collinear point is shown in

Figure 3.3. The contribution of this direct solar effect to the effective potential energy (for motion relative

to the Earth) is

where

and M® is the mass of the Sun.

EARTH SUN

I rs " 1
r S

(3.36)

r : (1 + yL)(1 + p) + i + yj, (3.37)

Since r s >> r, Equation 3.36 can be expanded in a power series

__I 1 [3/,. ,\' 1(.r_lUD=

+L-_kT]-_kT)@ +.... <'"'>

Figure 3.3-Geometry for direct solar perturbation near

a collinear point of the Earth-Moon system. Therefore, the acceleration can be written
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where

and

kr=)B- " - + .... (3.40)

= m 2. The components of PD are approximately

PxD=PD'i _= m2rtl(3 cos 2O)st + 1 ) -2_--)sin 2O_st

+ (3 cos COst + 5 cos 3O_st) - (sin COst + 5 sin 3OJst (3.41)

PyD = PD " J _ m2r sin 2c%t -_r)(1 - 3 cos 2COst)

Cancellation of first-order terms at a collinear point

The indirect solar perturbation enters through p and _. From Equations 2.43a and 2.43b, it

can be seen that the indirect acceleration at a collinear point is approximately

and

Pxl % - (1 + yL)(p - 2v - 3p)

Pyl _=- (1 -+yL)(2/5 + P).

(3.43)

(3.44)

To be in harmony with Colombo's solution, it is only necessary to show that all acceleration terms to O(m 3)

vanish. The linear approximations in Equations 3.43 and 3.44 are sufficiently accurate for this purpose. To

the same order of approximation, Equations 3.41 and 3.42 are

and

PxD %1m2(1 + YL)( 3 cos 2OJst + 1)

3 m2(1 i YL) sin 2O_st.PyD = 2

(3.45)

(3.46)

Substituting Equations 3.31 to 3.35 [keeping only terms to O(m3)] into Equations 3.43 and 3.44, it is found

that Pxl + PxD = 0 and PyI + PyD = 0 to O(m3). *

Periodic orbit correction

Using Equations 2.43a, 2.43b, 3.41, and 3.42 and neglecting terms of O(m4), the linearized

equations of motion in the vicinity of a collinear point are

*In an earlier paper (Reference 7), this author reached an erroneous conclusion regarding this cancellation because
of inappropriate expressions for p and u.
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[2 m2 t)(- 2_ - (2B L + 1)x -- _- 6BLp +-_-(1 + 3 cos 2_Ost

+[_ 3 2 2oJst]y 2_)_--_m sin +

and (3.47)

y + 2_ + (B L 3 2 2_Ost_ x-1)y=- [5+_m sin

+ _ + 3BLP +--_ (1 - 3 cos 2o_st y -
2_.

As before, the first approximation to a periodic orbit around a collinear point is given by Equation 3.8. A

frequency correction to this periodic orbit can be obtained from Equation 3.47. The constant coefficients of

O(m 2) in Equation 3.47 lead to a modified characteristic equation (cf. Equation 2.49)

+ m2
s4- [(BL - 2) -_(BL + 2)_S2 - (2BL + I)(BL -1)(I +-_I= O. (3.48)

For the L 2 point, the modified characteristic equation yields a corrected frequency of (% = 1.86247. How-

ever, because a)n0 -- 1.86265, this correction is usually negligible.

The second-order correction to the periodic orbit is found by employing the methods of Section

B.3 of this chapter. Although the expressions for p and v in Equations 3.31 and 3.32 contain periodic terms

with frequencies o_s and 2_os when quantities of O(m 3) are retained, only terms of frequency 2(o s are consid-

ered in this section. This should be sufficient for an order of magnitude estimate of the correction. The

differential equations for the solar perturbation correction are

xn2 - 2Yn2 - (2BL + 1)xn2 -- Kx sin (2o) s + _on)t + Kx sin ((% - 2o)s)t

and (3.49)

where

and

with

!

_;n2 + 2xn2 + (BL - 1)Yn2 -- Ky cos (2oJ s + (%)t + Ky cos (to n - 2ogx)t,

Kx=tk[v3-3BLP3+-_m21 - v3a)n+_I_'3--_m2]fAy 1,
(3.50)

(3.51)

+-_BLP3--_m 2] Ayl, (3.53)
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85_3_=- m2 }'
/

and

Particular solutions for these differential equations are

xn2 = Ax2 sin (2ca s + can)t + A'x2 sin (can - 2cas)t

and
I

Yn2 = Ay2 cos (2o) s + can)t + Ay 2 cos (can - 2cas)t"

Once again, consider the example of Section B.3 of this chapter. Using the values

it is found that

and for Ay 1 = 0.02 = 7688.1 km

P3 -- -0.00692059, v 3 = 0.0183515,

53 = -0.0344011, cas -- 0.925199,

m = 0.07480133, BL2 = 3.19042,

can = 1.86265, k = 0.343336,

K x -- -0.025096 Ay 1,

K x -- 0.017698 Ay 1,

Ky = -0.035165 Ay 1,

! Z

Ky -0.026236 Ay 1,

Ax2 = 0.0029012 Ay 1,

!

Ax2 =-0.0024375 Ay 1,

Ay 2 = 0.0048903 Ay 1,

!

Ay 2 =-0.011951 Ay 1,

Kx = -1.3934 × 10-7g, Ax2 = 22.30 km,

!

K'x = 9.8264 × 10-8g, Ax2 = -18.74 km,

Ky = -1.9524 × 10-Tg, Ay 2 = 37.60 kin,

gy =-1.4567 × 10-7g, dy 2 =-91.88 km.

Although these corrections are small, the solar perturbation terms should be included in periodic orbit cal-

culations because accelerations of 10-Tg are not insignificant.

(3.54)
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2. Effectof theMoonat theSun-EarthCollinearPoints

Thegeometryfor theSun-Earth-Moonsystemis depictedin Figure3.4. Considera point0 that is

collinear with the Earth-Moon barycenter B and the Sun. The distance rBO is determined by assuming that

the total mass of the Earth and Moon are concentrated at B, and then taking rBO as the libration-point dis-

tance YL for tL = (m 1 + m2)/(m 1 + m 2 + m3). Does the point O lie closer to an equilibrium solution in the

Sun-Earth-Moon system than the classical Sun-Earth collinear libration point? This question can be re-

solved by finding the perturbed path (dynamic equilibrium point or "nominal path") for a satellite in the

vicinity of the point O. If the maximum radius of the perturbed path relative to 0 is smaller than the dis-

tance from 0 to the classical collinear point, then it is more appropriate to consider 0 to be a collinear

libration point of the Sun-Earth-Moon system.

The accelerations relative to an inertial reference system can be obtained with the aid of Figure

3.4. Defining rij =- rI - ri, these accelerations are

mlrO1 m2r02 m3ro 3

r_320
(3.55)

m2r12 m3r13 (3.56)

./i-r13 2 +-r38 '

and

mlrl2 m3r23
(3.57)

./e- r82i r_a '

m lr18 - -m2r23 (3.58)
"/8 = - r_ 8 r_ 8

Using the definition of the barycenter (mlrB1 + m2rB2 -- O), it is found that

rB = r 2 - rB2 = r 2
m 1 m 2 m 1

ml + m2(r 2 - rl) _ ml + m2r2 + ml +m--------2rl. (3.59)

% (EARTH)

m,,soN, a l'

rB2

m2IMOON]

Differentiating Equation 3.59 and substituting Equa-

tions 3.56 and 3.57 gives

m [ mlrl3 m2r23 1

Figure 3.4-Geometry for a collinear point in the Sun- This relation, along with Equation 3.58, leads

Earth-Moon system, to*

*This result is obtained by keeping only the first term in an expansion where the ratio of the second term to the
first term is about 8 × 10-s.

42



:;)i

Ļ
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Making use of Equations 3.55, 3.60, and 3.61, it is now possible to give the acceleration of a satellite at 0

relative to the Sun as

_3o = YBO - VB3 = ¥0 - "fB - _B3 -
msr8o (mz+m2+ms) i

r330 + r13 ---rB3 r31 (m2rB20 + mlrBO)

m2 m 3

+_-'-'-'-'-'-'-'-'-'3-(rB2'02 - rBO) - (ml + m2)rS-18(m irB8 + m2rB2)

m3m 2

(ml + m2)r33 (rB3 - rB2). (3.62)

Neglecting terms of O(rB2/rBO )4, (rB2/rBO _= 1/4), a moderate amount of algebra reduces Equation 3.62 to

•. _ msr30 .FrBo rB8]

,=o: r==o_='+=='[,_---1,_=_+"' _='°=_
where

°=ID,==.,=o=(_,=_l_ =(:=_-,,o_l,+[=(,=A_":,-[o [ ;{o _kW +-_\ 40 ) ] "_ {t_)

_{ ;go 7 +-_V-;io)Crio 7-mr r=;o7] =o_.

Since rBO = YL' it is immediately obvious from Equation 3.63 that i30 = P.

(3.64)

For the remainder of the analysis, the orbital eccentricities and the inclination of the Earth-Moon

orbit to the ecliptic are neglected. Essentially nothing is lost here because this approximation is con-

sistent with the deletion of terms of O(rB2/rBO )4. Using rB2 • rBO = #rB2rBO cOS 0 (upper sign for L2;

lower sign for L1), the llnearized equations of motion relative to 0 become

- 2S'- (2B L + l)x = Px

and (3.65)

j_ + 2_ + (B L- 1)y= Py,

where

"=,_o_'=41_"+=oo==o_ oo=o+co==o_'==

3 "--_I (r12----_21+ 1[sin 0 + (r_o)}Py--_rIBO\rBO/ (sin20- 5sin30] rB2 ,

(3.66)

(3.67)
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and0 = nt (n = 13.369).

and

A particular solution of Equation 3.65 is the perturbed path

I II

x n=x c+A xcos 0+A xcos20+A xcos30

I 1!

Yn = Ay sin 0 + Ay sin 20 + Ay sin 30.

(3.68)

For the perturbed path at the L 2 point,

m 2 = 3.7397 x 10 -8,

rBO =

g _

BL2 -- 3.9405,

x c = 295.10 km,

A x = -7.47 km, Ay = 3.01 km,

I

A x = 11.47 km, Ay = -8.22 km,

I!

A x =-1.41 km, A'y = 1.10 km.

The constant term x c represents a shift along the x-axis to a new point O'. Relative to 0', the maximum

distance to the perturbed path is about 20 kin. Therefore, the point O' is never further than about 20 km from

a dynamic "equilibrium" point of the restricted four-body problem (Sun, Earth, Moon, and satellite).

3. Jupiter's Effect at the Sun-Earth Isosceles-Triangle Points

A satellite moving in the Earth's orbit around the Sun will be perturbed by several bodies, e.g.,

Earth, Moon, or Jupiter. The relative importance of the different effects may be quite variable, depending

on the distance of the satellite from the Earth. In Chapter II, the Earth's effect was considered, and artifi-

cial libration points were created by canceling this effect with a constant thrust acceleration. The principal

objective of this section is to obtain an estimate of Jupiter's effect at these artificial libration points

(isosceles-triangle points) when the satellite is relatively close to the Earth.

The geometry for Jupiter's perturbation at a Sun-Earth isosceles-triangle point is shown in Figure

3.5. Neglecting some small indirect effects, Jupiter's perturbative acceleration is

(3.69_

Assuming that (a/r) is small, Equation 3.69 becomes
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Figure 3.5-Geometry for Jupiter's perturbation at a
Sun-Earth isosceles-triangle point.

Pj =-_ a + 3 , (3.70)

and the components are given by

PJx = P J" i ::_ r-2\r] sin 2a (3.71)

and

1 Mj/a\
pjy = pj • j =_ _-_-_-)[1 + 3 cos 2a]. (3.72)

The magnitude of Jupiter's acceleration is

1 eel1/2. (3.73)
IpjI =_ _-g_r)tl0 + 6 cos

For 0 = 10 ° and a = 90 °, rough calculations give

IPjI =_1.35 x 10-9g (this value is relatively constant

for 0° < a < 180°). Because the thrust acceleration

at 0 =10°is IFcl _6.02 x 10-8g, Jupiter's pertur-

bation can be ignored when 0 < 10 °.

4. Solar Effect at the Earth-Moon Equilateral-Triangle Points

The analysis of the uncontrolled motion of a satellite in the vicinity of the Sun-perturbed Earth-

Moon equilateral-triangle points represents one of the most difficult problems in celestial mechanics. In the

past few years, several papers, e.g., see References 48 to 55, have appeared on this subject. A recent ana-

lytical study by Sehechter (Reference 54) is probably the most productive to date, and some of his conclu-

sions have been verified by the numerical work of Kolenkiewicz and Carpenter (Reference 55). However,

the general problem remains unsolved because the important effect of the lunar eccentricity was not consid-

ered in Schechter's study.
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CHAPTER IV

LINEAR FEEDBACK CONTROL

After a satellite has been injected into the vicinity of a libration point, a translation control system can

be used to eliminate the initial errors. This control system can also be used for station keeping. To imple-

ment this control, closed-loop guidance laws (feedback control logic) will be needed. In this chapter, sim-

ple linear feedback control laws are developed for the collinear and equilateral-triangle points. Although

the control acceleration is treated as if it were continuous, this assumption is not overly restrictive because

a pulsed control will behave essentially like a continuous control if the frequency of the pulse control is

much higher than any of the natural frequencies of the system.*

For motion in the immediate vicinity of a libration point, the linearized equations of motion are suffi-

ciently accurate. These equations will contain periodic coefficients if eccentricity is present or if the

satellite is following a nominal path. In many instances, these effects are small and can be neglected.

However, to obtain some estimate of the importance of these periodic coefficients, Floquet stability investi-

gations for some representative cases are included here.

A. Collinear Points

For small eccentricities, the linearized equations of motion at a collinear point (or relative to a small

nominal path about the point) are approximately (from Equation 3.4)t

- 2yz - (2B L + 1)x = Fcx, (4.1a)

and

_]+ 2f_ + (B L - 1)y = Fcy,

+ BLZ -= Fcz.

(4.1b)

(4.1c)

! •

The z-axis motion is bounded and can be damped by simply taking Fcz = -klZ, where the feedback gain
!

k 1 > 0. The control synthesis for the unstable xy-motion is less obvious, but it can be accomplished with

elassieal methods [I_outh criterion (Reference 56) and root locus (Reference 57)].

*The continuous approximation is probably adequate if the pulsing rate is greater than 10 times any of the natural

frequencies of the system.
_For the equations relative to a nominal path, the variables (_=,77,4) should be used (_== x - xn, etc.). However,

this distinction will be overlooked when the equations have the same form.
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1. RouthStabilityConditions

Fora radial-axis(x-axis)controlusingonlyrangeandrange-rate(x and2) feedback,thecontrolis

and
Fcx= -kl_ - k2x

Fcy = O.

(4.2)

This leads to the characteristic equation

s4+ klS3+ [k 2 -(B L - 2)]s2+ kl(B L - 1)s+ [k 2 - (2BL + 1)](B L - 1)=0. (4.3)

From Routh's criterion, the necessary and sufficient conditions for asymptotic stability are

and

kl>0

k 2 > (2B L + 1).

(4.4)

It is shown in the next section that, for certain values of k 1 and k 2, more damping can be obtained by adding
some positive y-feedback. For this case

and
(4.5)

and the characteristic equation is*

84+ klS3+[k2-(B L - 2)_S2+ [kl(B L -1)+2k4]s+ [k2-(2BL + 1)](B L -1)=0. (4.6)

The Routh conditions are

k 1>0, k 2>2B L + 1,

and

kl(B L- 1)+2k 4>0,

2k12(BL- 1)- k4{k1[3BL-(k2+ 4)]+ 2k4}> 0.

(4.7)

If cross-axis (y-axis) control is used, it is necessary to feed back all of the state variables for

stability. This control can be written

Fcx -_ 0

and (4.8)

Fcy = _k52 - k6x - k7_ + ksy.

*The same characteristic equation is obtained with the dual-axis control, Fcx= -kl:_ - k2x , Fcy -- -k6x , with k 6
replacing k 4.
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Thecharacteristicequationis givenby*

andtheRouthconditionsare

k 7>0, 2k 5> k 8+(B L -2),

and

2k 6 > k7(2B L + 1), k 8 > (B L - 1),

+ • + o.
(4.1o)

2. Root Loci and Closed-Loop Response

The preceding section has shown that it is possible to obtain a stable radial-axis control that re-

quires only range and range-rate measurements. However, it is still necessary to select the gains k 1 and k 2

for a satisfactory response. A simple method for determining these gains is to use root-locus plots. Taking

k 1 -- 0 and writing Equation 4.3 in the form

k2[s2 + (BL -1) ]

s 4-(B L-2)s 2-(2B L + 1)(B L- 1)
- -1 (4.11)

Im

S-PLANE

k2= 9.0
Re

"" I I v Ir,
I 2 3 4

Figure 4.1-1_oot-locus plot for Equation 4.11. Gain

is k 2, and B L = 4.

leads to the root-locus plot of Figure 4.1. It is seen

that neutral stability is obtained when k 2 > (2B L + 1).

When k 1 _ 0, Equation 4.3 can be written

klS[S2+(B L- I)]

(4.12)

The root loci of Equation 4.12 and some correspond-

ing response diagramsT are depicted in Figures 4.2

to 4.7 for three values of k 2. Inspection of these

figures shows that, for B L -- 4, a well-damped re-

sponse can be achieved by taking k 1 = 4.0 and k 2 =

12.0 (note that k 1 --lk2).

It is obvious that the response will be ufi-

derdamped whenever k 2 is too large. However, when

the radial-axis control is augmented with positive

y-feedback, it is possible to obtain more damping.

*This characteristic equation can also be obtained with the dual-axis control, Fox

with k 3 and k 4 replacing k 5 and k 6, respectively.

1The response diagrams were obtained from a TR-48 analog computer simulation.

= ks_ + k4Y, Fcy -__k7. 9+ ksY,
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kl =1"5 _,_

k I =3.0 _

C

"[m

S-PLANE

b I I
I 2 3

Re

J
4

Figure 4.2-Left, root-locus plot for

Equation 4.12. Gain is k 1, k 2 -- 10,

and B L = 4.

Figure 4.3-Below, response with

radial-axis control of Equation 4.2,

y versus x, k 2 : 10, B L = 4, and
_(o) : _,(o): o.

k 1 =0.5. kl= 1.5.

k1=3. kl--5.
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kl = 4"0 --"_

Im

S-PLANE

= 2.0

Ro

I I B I
I 2 3 4

Figure 4.4-Left, root-locus plot for

Equation 4.12. Gain is kl, k 2 : 12,

and B L -- 4.

Figure 4.5-Below, response with

radial-axis control of Equation 4.2,

y versus x, k 2 : 12, B L = 4, and
2(0) = _(o) = o.

k 1 -- 0.5. ................. kl:2.

kl:4. kl=6.
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= 7.0

S-PLANE

Re

4

Figure 4.6-Left, root-locus plot for

Equation 4.12. Gain is k 1, k2=

16, and B L = 4.

Figure 4.7-Below, response with
radial-axis control of Equation 4.2,

y versus x, k 2 = 16, B L = 4, and

_(o) = _(o) = o.

kl = 1.5.
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This can be seen at once by comparing Figures 4.7 and 4.8 (note instability at k 1

explanation for this behavior can be found by writing Equation 4.9 as

-- 0.5 in Figure 4.8.) An

2k4s
= - 1 (4.13)

and examining the resulting root-locus plot given in Figure 4.9. It can be seen that the damping will be

increased for small values of k 4, but instability can occur if k 4 becomes too large.

3. Floquet Stability Investigations

In some instances, the magnitudes of the periodic coefficients in the linearized equations of motion

are appreciable. Therefore, the effects of these coefficients on the stability of the closed-loop system

should be examined. If the effects from the eccentricity and the amplitude of a nominal path are analyzed

kl = N.5.
k 1 = 1.5.

k 1 = 4.5. k 1 = 7.

Figure 4.8-gesponse with radial-axis control of Equation 4.5, y versus x,

k 2 = 16, k 4-- 3.5, B L : 4, and _(0) -- _(0) = 0.
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k4 = 3.5

Im /

/

S-PLANE

=20.9

separately,* this examination can be performed in an

efficient manner by making use of Floquet theory

(Reference 58).

The linearized equations of motion can be

written in the matrix form

/
/

'\
\

\
\

I 2 3 4

Ro

)l(t) : F(t)X(t). (4.14)

For a two-dimensional analysis (fourth-order sys-

tem), X(t) is a 4 × 1 state vector and F(t) is a 4 × 4

periodic matrix [i.e., F(t) : F(t + T)]. To implement

Floquet's theory, it is first necessary to define a

4 × 4 matrix H(t) by

fl(t) = F(t)H(t)

and (4.15)

H(0) = I (unit matrix).

Figure 4.9-Root-locus plot for Equation 4.13.

is k4, k 1 = 4.5, k 2 = 16, and B L = 4.

Gain

Equation 4.15 is integrated numerically to obtain

H(T), and the following characteristic equation is

formed

det [H(T) - M] = 0. (4.16)

On the assumption that the roots )tj (j = 1, 2, 3, 4) of Equation 4.16 are distinct, Floquet's theorem states

that all solutions of Equation 4.14 are bounded if and only if

lkit _ 1 J = 1, 2, 3, 4. (4.17)

Eccentricity effect

From Equations 2.43 and 4.2, the linearized equations of motion at a collinear point with

radial-axis control are

and

- 2(1 + v)9 - (2B L + 1)x -- (2v - 6BLp)X + _,y - kl:_- k2x

_; + 2(1 + v)_ + (B L - 1)y = - _x + (2v + 3BLp)y.

(4.18)

Neglecting terms of O(e 2) (cf. Equation 3.19),

and

/9 = -e Cos t

v = 2e COS t.

(4.19)

Therefore, T -- 2_, and

*In general, some coupling is present.

54



0

F21
F(t) =

0

F41

x(t) l

_(t) l
X(t) = , (4.20)

y(t) l

£(t) l

1 0 0

- k 1 F23 F24

0 0 1

F42 F43 0

: [_(2BL+ 1)- k2+ 2e(2+ 3BL)cos t], (4.22)F21

F23 = -F41 = -2e sin t,. (4.23)

(4.21)

and

F24 = -F42 = 2(1 + 2e cos t), (4.24)

F48 = - [(B L - 1) + e(3B L - 4) cos t]. (4.25)

When Equations 4.20 to 4.25 are substituted into Equation 4.14, and when the aforementioned procedure is

carried out, the instability regions of the parameter space (k 1, k 2) are determined. Instability charts for the

collinear points of the Earth-Moon system are given in Figure 4.10.

Two interesting features of these charts should be pointed out; By analogy with the constant

coefficient system, Equation 4.22 suggests that the periodic coefficient system may be stable if

k 2 > (2B L + 1) + 2e(2 + 3BL). (4.26)

(k2) > 13.19 and (k2)L > 8.65. When these inequalitiesFor the Earth-Moon system, Equation 4.26 gives L1 , 2

are satisfied, the larger instability regions of Figure 4.10 are excluded. The remaining points of instability

can be explained by resonance. The value of k 2 for closed-loop resonance of the constant coefficient sys-

tem can be found from Equation 4.3. For k I = 0, this value of k 2 is given by

(2B L + 1)(B L - 1) - (B L - 2)(02 - 0)4
k2 = (4.27)

(B L - 1) - o) 2

When o) = 1, the critical values of k 2 in the Earth-Moon system are 13.57 and = 11.74.
1 2

4.10 shows that points of instability are located in the vicinity of these critical values.

Figure

It is tempting to assume that Equations 4.26 and 4.27 can be used to find the principal insta-

bility regions for any system. At the L 2 point of the Sun-Mercury system, Equation 4.26 gives k 2 > 14.68,
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Figure 4.10-Instability charts for controlled motion, with radial-axis control of Equation 4.2, at the

collinear points of the Earth-Moon system, e = 0.05490, and ® - unstable.

and Equation 4.27 yields k 2 = 11.98. A comparison of these values with the instability chart of Figure 4.11

shows that a more sophisticated interpretation is needed for larger eccentricities.

Motion relative to a periodic orbit

If eccentricity terms are neglected, the linearized equations of motion relative to a periodic

orbit around a collinear point with radial-axis control are (see Equations 3.30 and 4.2)

and

"_-2il - (2BL+ i)_:=-T-3CLAylI2k(sinc%t)_-(cosc%t)7/]-kl_- k2_:

+2_+(BL - 1), =-+3C_Ay_[k(sin_,,t), +(cos_,,t)_].

In this case, T = 2v/o)n, and

X(t) =

4(t)

_(t)

_(t)

_(t)

F(t) =

0 1 O 0

F21 -k I F23 2

0 O 0 1

F41 -2 F43 0
_ --

F21= _2BL + 1)- k2¥ 6CLkAy 1 sin o)nt1,
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Figure 4.11-Instability chart for controlled motion,

with radial-axis control of Equation 4.2, at the L 2

point of the Sun-Mercury system. BL2 = 3.9772, e =
0.20563, and ® - unstable.

bility region of Figure 4.12 is caused by a subharmonic

the form of F(t).

and

F23 -- F41 -- + 3CLAy 1 cos o)nt, (4.32)

F48 =- _B L - 1) ¥ 3CLkAy 1 sin o_,t]. (4.33)

The instability regions of the parameter space (Ay 1,

k 1, k2) can be obtained by substituting Equations

4.29 to 4.33 into Equation 4.14 and following the

procedure given earlier. Instability charts for the

L 2 point of the Earth-Moon system are given in Fig-

,, ure 4.12 for six values of the gain k 1. For a lightly

damped system (k 1 -- 0.1), the region of instability is

rather large. However, the size of this region

shrinks quite rapidly as the damping is increased.

At k 1 = 2.5, it has almost disappeared from the param-

eter space of Figure 4112. For co = O_n/2 -- 0.931325,

Equation 4.27 gives k 2 -- 10.87. Thus, the insta-

resonance at co = con�2 as might be expected from

Bo Equi lateral-Triangle Points

If eccentricity is neglected, the linearized equations of motion at an equilateral-triangle point are

_' - 2_' - ax' =Fcx,,

(from Equation 2.62)

(4.34a)

and

(4.34b)

(4.34c)

!

Once again, the z'-axis motion can be damped by using the control Fcz, = - k'12' with k 1 > 0. As shown in

Chapter II, for /_ < 0.03852 .... the coupled motion in the x'y'-plane is neutrally stable when Fcx, = Fcy, = O.

In this section, a simple single-axis feedback control is designed; this control will provide adequate damp-

ing for the oscillatory motion.*

l_outh Stability Conditions

Damping can be accomplished with the radial-axis (x'-axis) control

Fcx, = - kl_' + k4Y'

and (4.35)

Fcy, = 0.

.

*Fleming (Reference 5) has designed a dual-axis feedback control to perform the same task.
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Figure 4.12-Instability charts for controlled motion, with radial-axis control of Equation 4.2, relative to

a periodic orbit around the L 2 point of the Earth-Moon system. ® -unstable.

With this control, the characteristic equation becomes*

s 4 + klS3 + s 2 + (2k 4 - kl/9)s + a/9 = 0, (4.36)

*The dual-axis control, Fcx,= -kl:_', Fcy, = -k6x', yields the same characteristic equation, with k 6 replacing k 4.
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and the Routh conditions are

k 1 > 0, 2k 4 > kl/_,

and (4.37)

+ >

The damping can also be obtained with the cross-axis (y'-axis) control

FCXI -- 0

and (4.38)

Fcy, = - k6x, - k7_.

For this case, the characteristic equation is*

s 4 + k7s3 + s 2 + (2k 6 - k7a)s + a/_ = 0, (4.39)

and the Routh conditions are

k 7 > 0, 2k 6 > k7a,

and (4.40)

kT[k6(1 + 2a)-2k7a] > 2k 2.

Notice that Equation 4.40 has the same form as Equation 4.37, with a replacing 8.

2. Root Loci and Closed-Loop Response

Because of the similarity of Equations 4.36 and 4.39, the root-locus plots for both the radial-axis

and the cross-axis controls are equivalent. Therefore, only the radial-axis control of Equation 4.35 is con-

sidered here. To obtain quantitative results, the parameters a and/9 (see Equations 2.63 and 2.64) are com-

puted for the Earth-Moon system, and

a -- 2.97275, /9 = 0.02725. (4.41)

If k 4 = 0, Equation 4.36 can be written as

kls(s -

s 4 + s 2 + af_

and the root-locus plot of Figure 4.13 is obtained.

ble roots are taken into the left half of the plane.

-- - 1, (4.42)

By choosing appropriate values for k 1 and k 4, the unsta-

This can be seen graphically by writing Equation 4.36 as

2k 4s

s 4 + kls8 + s 2- klfis + a_
-- - 1 (4.43)

*The dual-axis control, Fcx_ -- k4Y t, Fcyt -- -kTY _, yields the same characteristic equation, with k 4 replacing k 6.

59



andinspectingaroot-locusplot fora fixedvalueof k 1.

is given in Figure 4.14.

when

For k I -- 2.0, the root-locus plot of Equation 4.43

The Routh conditions of Equation 4.37 show that asymptotic stability is obtained

k 4

0.05808<-_< 0.4692.
(4.44)

In Figure 4.15, the closed-loop response for k 1 = 2.0 and k 4 = 0.25 is compared with the uncontrolled motion.

S-PLANE

=2.0 =2.0

0.5 1.0

Figure 4.13-Root-locus plot for Equation 4.42. Gain

is k 1, a = 2.97275, and/3 = 0.02725.
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Figure 4.14-Root-locus plot for Equation 4.43. Gain

is k 4, k I -- 2.0, a = 2.97275, and/_ = 0.02725.
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Without control. With radial-axis control of Equation 4.35,

k 1 -- 2.0 and k 4 : 0.25.

Figure 4.15-Response at the equilateral-triangle points, y" versus x'. a = 2.97275, /_ = 0.02725,

and _'(0) = x'(0) = _'(0) = 0.
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CHAPTER V

STATION KEEPING

Several methods for satellite station keeping in the vicinity of a collinear libration point are examined

in Chapters V to VII. An on-off control system is analyzed in Chapter VI, and an unconventional method is

investigated in Chapter VII. In the present chapter, the radial-axis control of Equation 4.2 is treated. Gen-

eral analytical relationships for the control requirements are formulated, and a solar sail control technique

is also presented.

As noted earlier, station-keeping problems for libration-point satellites have not received very much

attention. On the other hand, station-keeping techniques for synchronous satellites of the Earth (24-hour

satellites) have been thoroughly analyzed (References 59 to 63), and a large reservoir of practical experi-

ence has been acquired (References 64 to 66). This knowledge could be very useful in the design of propul-

sion systems, sensors, attitude control systems, etc., for libration-point satellites.

A. Average Control-Acceleration Requirements

Realistic estimates of station-keeping costs are needed for feasibility studies of libration-point satel-

lite missions. In this section, some general expressions for these costs are derived. To establish a basis

for comparison, note that the average control accelerations for synchronous satellites are about 1.5 × 10-7g

(1 fps/yr _ 1 × 10-9g) for north-south station keeping, and about one-tenth of this value for east-west station

keeping (Reference 63).

1. Cost Estimates for Noise Inputs

The station-keeping cost for a satellite that is following a nominal path around a collinear libration

point is a function of measurement noise, engine fluctuations, and random accelerations from such causes as

gas leakage or random solar radiation pressure effects. A block diagram of the radial-axis control system

with noise inputs is shown in Figure 5.1. The measurement noise is denoted by n_, nx; the engine noise is

nex; and the random accelerations are npx, npy. A simple lag filter has been added to reduce the effect of

the measurement noise. An optimum design can be achieved by choosing the control parameters (kl, k2' _)

to minimize the mean square value of the control acceleration Fcx (a description of this minimization proce-

dure can be found in Reference 67). Because the uncontrolled system is unstable, this minimization is

meaningful even when npx = npy = O.
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Figure5.1-Radial-axiscontrol systemwith noise

- y y the control acceleration is
npy

_A1 _

npx÷____ _+ + which can be written as

/ (kln/_+ k2nx)[-4

+1)(,L- 1

+ h(s) s2 + (eL - (nP x -

inputs. + 2Snpy _ +

%

nex,J
where

h(s)= rs5+ s 4+[k 1-r(B L -2ts3+

+Ikl-r(2BL + lt(B L - 1)s +

Optimization

From Figure 5.1, it can be seen that

(5.1)

nex)

(5._)

(5.3)

For the characteristic equation, h(s) = O, the l%outh stability conditions are

r_>0,

and

k 2 > (2B L + 1),

k(k22) > r"

(5.4)

Writing the characteristic equation in the form

(rs+ l)[s4 - (BL - 2)s2 - (2B L + I)(BL - 1)3

= - l, (5.5)

the root-locus plot of Figure 5.2 is obtained.

The engine noise and random accelerations can usually be neglected in a first approximation,

and the control acceleration then becomes
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(klnf_
k2nx) is4F - 2)s 2 (2B L + 1)(B L - 1)1-] (5.6)

+

Fcx(S) = h(s) L - (BL - A

Assuming that n:_ and n x are independent, white, Gaussian processes, the mean square value of Equation

5.6 is

p + jco

(Fcx) 2 = Ni + k2R _]- h(s)h(-s) ds =_N _P5, (5.7)
" _'03

where

g(s) = s 8 - 2(B L - 2)s 6 + [(B L - 2) 2 - 2(2B L

+ 2(B L - 2)(2B L + 1)(B L - 1)s 2 + (2B L

+ 1)(B L - 1)_s 4

+ 1)2(BL - 1) 2" (5.8)

Nt and N x are the noise levels, and R N - (Nx/Ni_). The integral of Equation 5.7 can be written as an alge-

braic function of the control parameters (k 1, k 2, r) by using a special table of integrals (Reference 67).

Because the resulting expressions are rather cumbersome, _ numerical search procedure (Reference 68) is

used to find a minimum value of the cost parameter PS' while the stability conditions of Equation 5.4 are

satisfied. It is found that the optimum values are

--4(2B, 1), k2 (5.9)

Im

S-PLANE

where Q is a function of B L and is plotted in Figure

5.3. Therefore, the minimum average control accel-

eration is given by*

IFcxl =_0.8 QN;:. (5.10)

Re The effects of periodic coefficients

(see Chapter IV) have not been considered in the

foregoing optimization. This omission is probably

not too serious as long as the unstable regions of

the parameter space are avoided, but some method of

assessing the influence of these coefficients would

be useful. Equation 4.26 implies that an effective

value of B L,

Figure 5.2-Root-locus plot for Equation 5.5.

is k 1. Not to scale.

Gain
B'L =-BL + e(2 + 3BL), (5.11)

*ForaGaussianprocess, [Fcxl= v_(F x)=_0.8(F x)cc rms rms "
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Figure 5.3-Cost parameter Q versus B L.

with W s

and 71.

may be more appropriate for the general case.

Although this conjecture seems to be reasonable,

verification is required.

by using

Es.timation of noise level

The noise level N:i can be estimated

X

N_ = T M, (5.12)

where a_2 is the range-rate variance, Ws is the sam-
5 4 5

BL ple rate, T 1 is the time interval for a single set of

measurements, and T M is the time interval between

sets of measurements. For deep space instrumenta-

tion facility (DSIF) measurements, a_ _ 0.02 m/sec

= (minute)- 1 (Reference 69). Estimates of o:_ for onboard sensors can be found in References 70

Costs at the Earth-Moon collinear points

The general results of Equation 5.9 can be used to find typical values for the station-keeping

costs at the Earth-Moon collinear points. For the examples given here, periodic-coefficient stability results

are taken into account while choosing the ratio kl/k 2, but Equation 5.11 is not employed.

With DSIF measurements* and T M = 1 day and T 1 = 5 minutes, Equation 5.12 gives Nk = 1.757

10 -11 = 6.912 m2/sec. The ratio kl/k 2 is chosen to be 0.1, which means that R/V = 0.01. Taking N x =

(a2x/WsT1)TM and solving for ax yields aX = 0.751 km. (This accuracy is easily attained with DSIF meas-

urements.) Equations 5.9 and 5.10, along with Figure 5.3, give for L 1

k I = 1.505, k 2 = 15.05,

and

and fo r L 2

r = 0.033, P5 =_204,

I-Fcxl = 4.790 x 10 -5 = 1.330 x 10-Sg,

k 1 = 0.9841, k 2 = 9.841,

r = 0.033, P5 _ 86,

and

IFcxl = 3.110 × 10 -5 = 8.858 x 10-9g.

*It is assumed here that the satellite in the vicinity of L 2 is following a quasi-periodic orbit around the point and
is visible from the Earth tracking station.
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Thevaluesof IFcxl for these examples are roughly equal to the average control accelerations that are

needed for east-west station keeping of synchronous satellites.

2. Cost for Sinusoidal Control Acceleration with Noise

In some instances (see Chapter VIII), the station-keeping cost is given by [Fcx I where

Fcx = p(t) +Fcx, (5.13)

p(t) = K c cos _ot, (5.14)

and Fcx is a random variable with a Gaussian distribution. Therefore, Fcx has a Gaussian density function

t) - 1 t Ix - p(t)]2_
(PF,(X,

aFX/_ exp ( 2_F "_ (5.15)

with aF -= (Fcx)rms (for the radial-axis control of Figure 5.1, aF -- v_Ps).

control acceleration is given by

For this case, the average

{]0• E __-

IGxl : e. IGx(t)[dt : _ Jo E{IF_x(t)lldt, (5.16)

where

_co

(5.17)

and E{y} is the "expected value" of a random variable y. After some rather lengthy manipulations (see

Appendix A), Equation 5.16 becomes

IGxl:_ 2_do(U)+_ uo(U)+11(u ' (5.18)

• 2 2
where lo(u ) and ll(U ) are modified Bessel functions and u = Kc/4a F. Using well-known series expansions

(Reference 72) for lo(u ) and ll(U), two limiting cases of Equation 5.18 can be deduced:

Case i, for small values of u,

and Case 2, for large values of u,

(5.19)

+ 2Kc2j . (5.20)
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3. Costfor a ConstantDisplacement

A satellite is sometimesstationedat aconstantdistance8 from the libration point. This displace-

ment may be intentional, or it may be the result of a bias error in the measurements. In either case, the

station-keeping cost will be increased. If terms of 0(84 ) are neglected, this cost can be obtained from

Equation 2.43. The special cases in which 8 lies along a single coordinate axis are illustrative. If p and v

are neglected, these costs are approximately

for 3x only,

and

Fcx = - (2B L + 1)8 x i 3CL_2x - 4DL _3

F cy = Fcz = O;

(5.21)

for 8y only,

3 2
Fcx = _-CL3y,

and

3 3
Fcy = (B L - 1)By --_DL3y,

Fcz = O;

(5.22)

and for 8 z only,

_3 2
Fcx : +2CL(_z'

and

Fcy = O,

3 3
F cz = BL8 z -_DL8 z.

(5.23)

The costs for a satellite in the vicinity of the L 2 point of the Earth-Moon system are given in Figure 5.4.

Notice that the contribution of the nonlinear portion of Equations 5.21 to 5.23 is extremely small for this

range of 8.

B. Solar Sail Control at the Earth-Moon Coll:inear Points

It has been shown that the magnitude of the control acceleration needed for station keeping in the vicin-

ity of a collinear point of the Earth-Moon system may be extremely small. Therefore, it may be feasible to

obtain this acceleration with a small solar sail. At first, the utilization of a solar sail to perform this task

appears to be straightforward, until it is realized that the control-acceleration vector can never have a com-

ponent directed toward the Sun. Furthermore, the direction of the incident solar radiation is varying contin-

uously with respect to the xyz-coordinate system. Fortunately, these difficulties can be circumvented by

using a method that was originally devised by Colombo (Reference 3), who demonstrated that the required

accelerations could be obtained by forcing the libration-point satellite to follow a path that is synchronized

with the Sun's motion.
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Figure 5.4-Station-keeping cost for a consta,_t dis-

placement from the L 2 point of the Earth-Moon system.

Moon system is depicted in Figure 5.5.

motion (cf. Equation 3.26) are

An analysis of a particular solar sail control

technique is presented in this section. Colombo's

strategy is employed, and explicit relations for the

sail variations are derived. The analysis is limited

to the xy-plane, and the effects of eccentricity and

solar perturbations are neglected. Solar occultation

periods are also neglected in this analysis. Al-

though it is possible to use the solar sail for both

attitude and position stabilization, only position

control is considered here.

1. Basic Concepts

The geometry for a plane solar sat] in the

vicinity of a collinear libration point of the Earth-

For specular reflection of the incident solar rays, the equations of

and

- 2p- (2B L + 1)x=- Kp COS 2 /Jcos(0+ih)=Fcx

+ 2/_ + (B L - 1)y-- Kp cos 2 %hsin (0 + _b) -- Fcy,

(5.24)

where 0 = cost (_s = 0.92519867), Kp

Equation 3.1,

and 0 are bounded control variables (Kp >_O, IO[ <- _/2), and from

(5.25)

Following Colombo's suggestion, the libration-point satellite is required to follow a path [Xo(t), Yo(t)], which

is determined by finding the forced response of

and

ii 0-2p0-(2B L +l)x 0=-K 0cos 0

Yo + 2Xo + (BL - 1)Y0 = K0 sin 0.

(5.26)

The connection between the control accelerations (see Figure 5.5) is given by

I

Fc = F0 + Fc (5.27)

with

F c = Fcxi + FcyJ,
(5.2s)

and

F 0 = Ko[- cos 0 i + sin 0 j], (5.29)

' : F' " (5.30)
F c F'c/:i + cvl.
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.J- LIBRATION POINT

x _

Figure 5.5-Plane solar sail in the vicinity of a

collinear libration point of the Earth-Moon system.

I

t

I_ K,

Figure 5.6-Solar sail acceleration diagram.

Kp)ma x a common tangent circle ofCOS2_ has with the

common tangent is at _ -- 0 °, and it is obvious that

Using linear superposition, it is obvious that the

equations of motion .relative to the path [Xo(t), yo(t)]

are

"_- 2i] - (2B L + 1)_=-- F' c_

and (5.31)

+ 2d + (B L- 1)_?-- F'
C7]'

where_=--x-x 0and_?=y-y0.

A graphic exposition of the solar sail con-

trol technique can be obtained by inspecting the

acceleration diagram of Figure 5.6. In this figure,

the magnitudes of the control accelerations needed

for station keeping are represented by K b (measure-

ment bias errors), K n (measurement noise), and K d

(perturbations, etc., which are not eliminated by

following a nominal path),

and

K 1 -- K b + K n + K d. (5.32)

It is easily seen that the required acceleration can

be provided by suitably adjusting the control varia-

bles K_ and _. Figure 5.6 can also be used to de-
P

termine (Kp) m From Equation 5.25, it can be seenaX °

that this specification is equivalent to finding the

maximum size of the solar sail. The minimum re-

quired value of (Kp)m_ x can be found by observing

that, for this special case, the curve ]Fc] =

radius K 1" For Cmax -< 30° (sin _bma x : K l/K0), the

"(Kp)max = Ko+ K1. (5.33)

When ¢max -> 30°, the analysis is more involved, but it can be shown that

(5.34)

and the common point of tangency can be determined from
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cos - V<olj
(5.35)

Sail Variations with l_adial-Axis Control

For a radial-axis control, F' = 0, and Equations 5.24, 5.26, and 5.31 give
c77

-KpCOS 2¢cOs (0+¢)+K 0cOs 0= F'c_

and (5.86)

Kp cos 2 _ sin (0 + ¢) - K o sin 0 = 0.

,

It is convenient to use the definition

Kp - K 0 + Qp, (5.37)

where Qp represents the variable portion of Kp. The sail variations _ and Qp can be expressed as functions
of the variables F' c_ and 0. Equations 5.36 and 5.37 yield

and

!

Fc_ sin 0

tan _ - Ko _ F'

[(K0 - F'c_:)/c°s3 _ 1

Qp=Kol--- -_--- __,[rio - F c_(1 - cos 0)

(5.38)

(5.39)

and if the radial-axis control of Equation 4.2 is used,

!

Fc_: = - kl_- k2_=. (5.40)

I

When Fc_ << K 0' Equations 5.38 and 5.39 lead to the approximate relations

F'

sin0
and

_- F'c_Qp = cos 0.

(5.41)

3. Examples

The variation of the area of the solar sail is minimized by choosing K o >> K 1. (The variation of

is also minimized.) It is quite possible that the mechanization of the solar sail control system will be less

complicated if only small sail variations are required. Therefore, a value of K 0 -- 15 K 1 (Omax= 3"82°) is

adopted for the examples given below.*

*Although sail variations are minimized when K o >> K 1, the required sail area As is increased.
not considered here.

This tradeoff is
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Forbothexamples,it is assumedthat K d _ 0, _= = 1 km, and m = 400 kg. K n is obtained from

section A.1 of this chapter, and pe= 4.50 x _(j--6 newtons/m 2. The forced response of Equation 5.26 is

written as

i o = Axo cos a)st

and (5.42)

Y0 = Ayo sin O)st.

With the values mentioned above, some of the important parameters for satellites in the vicinity of the Earth-

Moon collinear points are found to be

for L 1

and for L 2

Kb = 2.938 x 10 -5 = 8.157 x 10-9g,

Kn = 4.790 x 10 -5 = 1.330 x 10-8g,

K 0 = 1.159 x 10 -3 = 3.218 x 10-7g,

Axo = 14.8 kin, Ay o = 143.7 km,

A s = 149.7 m 2, and (As�m) = 0.374 m2/kg,

Notice that the forced oscillation is counterclockwise for L

IAxol •

Kb = 1.920 × 10 -5 = 5.330 x 10-9g,

K n = 3.110 x 10 -5 = 8.858 x 10-9g,

K 0 = 7.545 x 10 -4 = 2.128 × 10-7g,

Ax0 = - 10.4 km, Ay o = 202.9 kin,

A s = 97.4 me, and (As�m) = 0.244 m2/kg.

1 and clockwise for L 2. In both cases, IAyo[ >>
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CHAPTER VI

ON-OFF CONTROL SYSTEM

It is quite possible that the station keeping of a libration-point satellite will be accomplished with an

on-off control system. Accordingly, an analysis of the ensuing limit-cycle motion is in order. Two methods

of analysis are presented in this chapter. The first is an exact method that makes use of Fourier expan-

sions; the second is an approximate phase-plane technique.

Once again, a radial-axis control that requires only range and range-rate measurements is utilized. If

eccentricity, perturbations, etc., are neglected, the equations of motion in the vicinity of a collinear libration

point are

- 2_-(2B L + 1)x=-F(_

and (6.1)

Y + 2:_ + (B L -1)y = O,

where

_=-- _ + )_x, (6.2)

and the assumed on-off control characteristic F(_ has a deadzone _=dand a hysteresis loop of width 23 (see

Figure 6.1). An asymmetric characteristic was chosen because only "one-sided" limit cycles are considered

here.* The constant h in Equation 6.2 is just the slope of the "switching line" in the _-x phase plane.

A. Limit Cycles: Exact Analysis

Conditions for the existence of limit cycles in Equation 6.1 can be found by using harmonic methods.

Approximate methods (References 73 and 74) that neglect all harmonics higher than the first are very popu-

lar, but their validity is sometimes questionable. Therefore, the higher harmonics are retained in the analy-

sis employed in this section. Although differing in some details, the exact harmonic method used here is

essentially the same as a method of Tsypkin (References 75 and 76).

1. Application of Harmonic Method

A block diagram of the on-off control system is shown in Figure 6.2, and it is clear that

_(s) : _(s)F(s). (6.3)

*One-sided limit cycles are possible because the uncontrolled system is unstable.
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Kcx

F(_¢)

Figure 6.1-On-off control characteristic.

From Equations 6.1 and 6.2, it

transfer function is

is found that the

G(s) =
(2B L + 1)(B L - 1) + (B L - 2)s 2 - s 4" (6.4)

For convenience, g(s) -- 1/G(s), and Equation 6.3

becomes

g(s)_=(s) = F(s). (6.5)

Typical oscillation waveforms for a stable limit

cycle are depicted in Figure 6.3.* In this figure

0 = _ot, (6.6)

F(s) _(s)

Figure 6.2-Block diagram of the on-off control

system.

and

where _o is the limit-cycle frequency. The Fourier

representations of _ and F can be written

and

_:(0)=a o+a 1sin 0+Z
n=-2

a n sin (nO+ O,) (6.7)

2F(0) =-_-+ (b n cos nO + c n sin nO). (6.8)

n=l

Using the waveform for F(O) in Figure 6.3, the

Fourier coefficients of Equation 6.8 are found to be

b 0 = 1--/2rrf F(O)dO-

"Jo

Kcx(O2 - 01)
(6.9)

b n = F(O) cos nO dO

=_x (sin nO 2 - sin n01), (6.10)

F(0) sin nO dO = Kcx (cos 1101 - COS //02).
/]77

(6.11)

*Notice that there are discontinuities in _ whenever the control is turned on or off. Tsypkin's graphical method as

given in References 75 and 76 is not applicable to this special case. However, a modified method, which can be ap-
plied to problems with discontinuities of this type, has been given by Korolev (Reference 77).
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Writing

g(s) = g(j_o) = R(_o)e j¢(_) (6.12)

and taking the inverse transform of Equation 6.5

gives

g(O)a 0 + R(co)a 1 sin [0 + ¢(co)]

co

n=2

sin [nO + ¢n + ¢(mo)] = F(0). (6.13)

Equation 6.13 leads to the relations

Kcx(O 2 - 01)

ao -- 27zg(O) ' (6.14)

Kcx -

0
e, e2

Figure 6.3-Oscillation waveforms (0 = _ot).

0

and

2Kc x 02 - 01

a 1 = rtR(co--_sin 2 ' (6.15)

2Kcx n(O 2 - 01)

an - nrrR(no)) sin 2 ' (6.16)

¢(co) :1[=-(0t + 02)],

¢0 __1[,.- n(01 + 02)]- $(no_).

(6.17)

(6.18)

From Equations 6.4 and 6.12, it is found that

and

(2B L + 1)(B L - 1) - (B L - 2)0) 2 - 0) 4
g(jo)) :

(h + j_o)_BL _ l)__o2 ] '

o-)4 + (B L - 2)0) 2 - (2B L + 1)(B L - 1) (0)2 _ a2)(_o2 +/_2)

(6.19)

(.0

tan ¢(co) = --_-. (6.21)

The constants a and/_ can be obtained from Table 2.3. a > 7, and it is apparent that R(o)) <0 for the fre-

quency range y < _o < a. This frequency range is not examined in this study, and it will always be assumed
that R(o)) > 0.* Equations 6.14, 6.17, and 6.18 can now be written in the form

• in the frequency range ), < _o < a, the control is turned on when f is decreasing and is turned off when g=is in-
creasing. Therefore, the presence of a stable limit cycle in this frequency range is highly improbable.
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Kcx(O 2 - 01)A

ao = 2_r(2B L + 1) ' (6.22)

and

1 (D

(01 + 02) = 77+ 2 tan- (-_-), (6.23)

1 [_-n(01 + 02)_ + tan- 1 (_) (6.24)¢,.

From Figures 6.1 and 6.3, it is clear that the deadT.one and hysteresis constants for the on-off control char-

acteristic are given by

_d-_-_(O1) + _(02) 1 (6.25)

and

(6.26)

Finally, with the aid of Equations 6.1 and 6.2, it can be shown that

a 0 a 1
x(O) =-_- _ sin [0 - tan- 1 (_-)]

and

+ sin 0 + On - tan-1

.=2  /x2 + (n )2

2alo)
cos 0 - tan-1 (f)l

(6.27)

= [_(no))2 - (B L - 1 2 + (noj)2

cos In0 + On - tan- 1 (-_-)]. (6.28)

Notice that KCX is just a scale factor, and the "normalized" limit cycle is completely determined by choos-

ing the parameters

(02 - 01), where (02 - 01)/277 - m is the fraction of the total time that the control is on,

h, where h is the slope of the switching line in the _-x phase plane, and

co, where co is the limit-cycle frequency.

2. Closed-Form Solution

Although the results of the previous section are exact, they are in the form of infinite series. With

results in this form, the synthesis of the control is sometimes inconvenient. Fortunately, some simplifica-

tion is possible for the important special case where the control is on for half of the limit-cycle period and

off during the other half. That is
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02 - 01 = _' (6.29)

k

and with Equation 6.16, Equation 6.7 becomes

2Kcx 2 (-1)n sin _2n+ 1)0 + _2n+!]_(0) = a 0 + a I sin 0 + _- (2n + 1)R_2n + 1)o)]
n=l

(6.30)

From Equation 6.23

and
(6.31)

and

and

sin 01 =

sin 02 -

(D

V/_2 + (o2

o9

(6.32)

Similar expressions can be found for Equation 6.24, and it can be deduced that

KcxX 2Kcx°_ 2
_(01) - 2(2B L + 1) + --n

n=0 [_(2//

r(2n + 1)2o) 2 - ]/2]

and

Kcxh 2Kc_xco
_:(02) = 2(2B L + 1) 7r

(2n + 1)2o92 - y 2]

n=0 [(2.+ 1)2o 2- a2]r(2n+ 1) 2°2+/32J"

(6.33)

Substitution of Equation 6.33 into Equations 6.25 and 6.26 yields

and

Kcxh

_:d - 2(2B L + 1)

E 1
°:0 + -

(6.34)

+ a 2 +/_----_ [(2n + 1)2 + (_/_)
_l=0

(6.35)

Closed-form expressions for the two infinite series are given in Reference 78, and Equation 6.35 becomes
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= -T-L_(_2 +/32) tan =_ + _(.2 +/3_) tanh (6.36)

A graph of Equation 6.36 for B L -- 4"(a 2 -- 4.2915, /32 --- 6.2915, y2 _- 3) is given in Figure 6.4.

It can be shown that the maximum and minimum values of x(0) occur at 0 -- 01 + (_/2) and 0 = 02 +
(_r/2), respectively. Substituting these values into Equation 6.27, it is found that

and

where

gcx

Xmax = 2(2B L + 1) + _ (6.37)

gcx

Xmi n
2(2B L + 1) _ ' (6.38)

°;o + +
(6.39)

The summation formulae of Reference 78 can be used to write Equation 6.39 as

+ a 2 +/32 = + 1)[(_2n + 1) 2 + (/3/(0)

sech

=--2- + a2-_a2-.F_2) sec /32(a2+/32) sech .
(6.40)

A graph of Equation 6.40 for B L = 4 is shown in Figure 6.5.

Equation 6.38 shows that Xmin < 0 when _ > Kcx/2(2B L + 1). Intuitive reasoning suggests that

limit cycles with Xmin < 0 are unstable. This conjecture will be substantiated by the stability analysis
given below.

B. Stability of Limit Cycles

The results of the previous section cannot be used with confidence until the stability of the predicted

limit cycle is verified. Tsypkin (Reference 75) has devised a method that reduces this stability investigation
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Figure 6.4-Hysteresis versus limit-cycle frequency

(B L = 4, 02 - 01 = 7r).
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=4,

to that of an equivalent sampled-data system. A

brief outline of this method is given below, and.

quantitative results are obtained for the special case

where 0 2 - 01 = 77.

1. Tsypkin's Method

Consider the perturbed limit-cycle motion

of the system shown in Figure 6.2. The input to the

on-off characteristic is

_:(t) = _:LC(t) + _:_(t), (6.41)

where _LC(t) corresponds to the assumed limit cycle,

and _=E(t) represents a small deviation. Similarly,

F(t) = FLC(t) + FE(t). (6.42)

The deviation in the output Fe(t) is just a sequence

of pulses, of height Kcx and width At n, which occur

at the beginning or end of the switching instants t n.

Assuming that _:E << _=LC' this deviation can be

represented by the impulse train

co

F e(t) _= Kcx E At,_(t - tn),
n=O

(6.43)

where 3(t) is the Dirac delta function, and following

Korolev (Reference 77), At n is expressed in terms of

the conditions that immediately precede the switch-

ing instant

At "_
/]

I_Le(t;)[ "

(6.44)

For the special case where the on and off periods are equal (i.e., 0 2 - 01 = rr), the switching inter-

vals are T = TLC/2 = rr/_o, and the deviation is given by

GO

F (t) - K°x E t,).
I cC(°l)l ,:0

(6.45)

Consequently, for small deviations, the stability of the limit-cycle motion where 02 - 01 = rr can be deter-

mined by checking the stability of the sampled-data system shown in Figure 6.6.
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_,(s) _,(s)

=_--

Figure 6.6-Sampled-data system for limit-cycle sta-

bility test (02 - 01 = _).

2. Results for Special Case (02 - 01 = 7r)

The characteristic equation for the sampled-

data system of Figure 6.6 can be written in terms of

the z-transform (z -_ e Ts) as

where

and

1 + kGN(Z ) = O, (6.46)

gcx

k-
/Lc(o- )l

(6.47)

P(s)

G/v(s) = - G(s) - Q(s)" (6.48)

Denoting the poles of GN(s ) by Pn, the z-transform

of Glv(s ) is (Reference 75)

GN(Z ) = Q,(pn) _ ePnTJ a 2 + 8 2
n--1

z [cos aT+ (h/a)sin aT]-i

g2 _ 2z cos aT + 1

z [cosh i_T + (h/E) sinh/_T]- 1

z 2 - 2z cosh fiT + 1
(6.49)

The denominator of Equation 6.47 is found by the following process. First, Equation 6.7 is differentiated

with respect to time. This gives

and at 0 = 01

and

GO

_Lc(O) = al0) cos 0 + E a,n0) cos (,0 + _,).
n=2

h

cos 01 V/_-+ 0)2

_LC(O1) - 2Kc-x0)_ 2 [(2n + 1)20) 2 - )/2]

 - )tan + +9)tanh .

(6.50)

(6.51)

(6.52)
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However,thereis adiscontinuityin _Lc(O)at 0 = 01 (see Figure 6.3), and the Fourier series converges to

the average value

_Lc(O1) = 2 (6.53)

It is obvious that

_L C (01) - 4-_,,(0 +)1= Kcx" (6.54)

Therefore

Kcx

_LC(O1) = _Lc(O1) +-_--, (6.55)

and this expression is used in Equation 6.47. Notice that k is independent of Kcx.

Equation 6.46 iS a fourth-degree polynomial in z. Because self-oscillations are examined here,

one root of this characteristic equation is found at z = -1, and the stability of the assumed limit cycle de-

pends on the locations of the three remaining roots. If these roots are located within the unit circle in the

z-plane, the limit cycle is stable. Numerical calculations reveal that the limit cycles are stable for h > 0

and co > oJc, where coc is a function of B L only. For three important values of B L, the critical frequencies
are

and

B L -- 3.19042 (Earth-Moon L 2 point)

B L -- 5.14760 (Earth-Moon L 1 point)

B L -- 4.00000 coc = 3.287.

The variations of the roots for B L = 4 are shown in Figures 6.7 and 6.8.

3. Procedure for General Case (02 - 01 _ 7r)

The characterisLic equation for the general case where 02 - 01 _ 7r is more complicated than Equa-

tion 6.46. It is shown in Reference 75 that this characteristic equation is

1÷L4,  (Ol)1÷ Ion(z)- : o, (6.56)

where GN(Z ) is given by Equation 6.49 with T = TLC = 2rr/co, m -=(02 - 01)/2rr, and (References 75 and 79)

(6.57)

_ P(P,)[_e(1-m)P,T 1 _Nl(Z,l-m) N2(z,l-m _ (6.58)
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6.7-Root variations as a function of h Figure 6.8-Root variations as a function of o_

(02_0 l=u,B L = 4, and o) = 4). (02-01 =_,BL =4,andh=2)"

Nl(Z, m) = _-_ + cos amT - cos (1 - re)aT + sin amT + sin (1 - m)a , (6.59)

N2(z, m)-- _-_ + y)_z cosh/_mT- cosh (1- m),_T +-_ sinh/3rot + sinh (1- m)_ , (6.60)

Dl(Z):Z 2-2zcosaT+l,
(6.61)

D2(z ) -- z 2 - 2z cosh fiT + 1.
(6.62)

It can also be deduced that

and

Kcx (6.63)
_Lc(°] ) : _Lc(°l) +--5-

gcx (6.64)
_Lc(°-2) : _Lc(°2) 2

The roots of the characteristic equation can now be found. Although eight roots are obtained from Equation

6.56, four of them are extraneous and should be disregarded. These extraneous roots are just solutions of

the quadratic equations, D l(Z) -- 0 and D2(z) -- 0. Another root is found at z = + 1, and the stability of the

limit Cycle is determined by the three remaining roots.
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C. Solar Sail Control at the Sun-Earth E 1 Point

To illustrate the use of the preceding formulae, a solar sail control system for a satellite in the vicinity

of the Sun-Earth L 1 point is considered here. By merely changing the area of the sail in the prescribed

manner, the on-off control system shown in Figure 6.2 can be obtained. For the Sun-Earth L 1 point, the

one-sided limit cycle is located between the Sun and the libration point.

Consider the case where 02 - 01 = rr. To make use of graphical results, the constant BL1 is approxi-

mated by BL1 _4. For B L = 4, coc = 3.287, and a good stability margin can be achieved by choosing a

limit-cycle frequency of co = 4 (TLc = 2,/o) -- 91.31 days). Figure 6.7 indicates that, for co = 4, small devi-

ations from the nominal limit-cycle motion are adequately damped by choosing h = 2. The choice of Xmin,

which specifies Kcx, is usually dictated by measurement accuracy limitations. For Xmin -- 100 kin, the
formulae of Section A.2 of this chapter give

Kcx = 1.613 x 10-8g, Xma x = 343.6 kin,

_=d =2"965 × 10 -6 , and c_=4.358 x 10 -6 .

Equation 3.1 shows that, for a satellite mass of 10000 kg and Cp = 2, the area of the solar sail is only
A s = 172.3 m 2.

By using a conically shaped solar sail, it may be possible to stabilize the satellite's attitude as well

as its position. Analyses of the attitude motion for a configuration of this type can be found in References
80 and 81.

D. Limit Cycles: Approximate Analysis

The results of Section A.1 of this chapter are not easy to apply when Xmax and Xmi n are specified and

the limit-cycle frequency o_ is arbitrary. Therefore, an approximate technique that uses Xma x and Xmi n as
inputs is presented here.

By neglecting the gyroscopic coupling in Equation 6.1, a closed-form solution for all values of 02 -

can be obtained. Without this coupling, the y-axis motion is simple harmonic. The remaining portion of

Equation 6.1 is just

01

- (2B L + 1)x = - F(_). (6.65)

This equation is only second order and can be conveniently analyzed in the phase plane. However, before

the phase-plane analysis is presented, the accuracy of this single-axis approximation is checked for the

special case where 02 - 01 = _.

1. Accuracy of Single-Axis Approximation

Proceeding in the same manner as in Section A of this chapter, and denoting single-axis quantities

with primes, it can be shown that
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(2B L + 1) - s 2
g'(s) = , (6.66)

s+A

0) 2+(2B L + 1) o_2+ e2
_-- (6.67)

R'(_) : _2 + _2 x/_ + _2'

e) (6.68)
tan ¢'(a)) = - _--.

Equation 6.68 is identical to Equation 6.21, and many of the equations of Section A of this chapter are valid

here. With these relations, it is easy to see that

Kcx_ (6.69)
_ - 2(2Br_ + 1)'

_' - 2Kcx--rra)_ 1
,__ _2n+ 1)_+(_/_)_]

K c x 7T(__)= 2_ tanh , (6.70)

gcx

Xmax 2(2B L + 1)
_' (6.71)

and

Kcx . _,
x I . :

mln 2(2B L + 1) _ '

co

_' - 2Kcx--rrco2E (-1)n
,=o (2n+ 1)_2, + 1)2+(_/_)2]

(6.72)

Kcx[1 _(_)]= _ - sech . (6.73)

With the exception of the quantities 3' and _', the solutions for the single-axis and coupled systems are

equivalent. Therefore, a measure of the accuracy of the single-axis approximation can be obtained by com-

paring these quantities. The percentage errors for the single-axis solutions are shown in Figure 6.9 for

B L -- 4 (e 2 : 9). Although the discrepancy is quite large at the lower frequencies, it is less than 10% in

both cases when a) > 6.

2. Phase-Plane Method

and

The basic equations for the single-axis approximation are

-(2B L +l)x=- F(©

_=: :_+ _x.

F(_) is shown in Figure 6.1.

Figure 6.10.

(6.74)

(6.75)

The geometry for a typical limit cycle in the _-x phase plane is illustrated in

From the figure, it is obvious that
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sus limit-cycle frequency (B L -- 4, 02 - 01 -- rr). plane.

and

_=d :- kx2 (6.76)

= _2" (6.77)

Between points 1 and 2, F(_:) = 0, and integration of Equation 6.74 gives

and

where

and

t12

_2 = eXl V/_2 - 1, (6.79)

:_log Iq+_-_- II, (6.80)

e 2 = (2B L + 1) (6.81)

x 2
q --- > 1. (6.82)

x 1
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Between points 2 and 3, F(_ -- Kcx, and a single integration of Equation 6.74 in this region gives

and

where
:_ -- e2q2x_(1 - r 2) - 2KcxqXl(1 - r),

(6.83)

(6.84)

(6.85)

From Equations 6.79 and 6.84,

e2(q2r 2- 1)

Kcx - 2q(r- 1) xl" (6.86)

With Equation 6.86, the necessary stability condition, Kcx > e2x 3, can be written in terms of q and r as

(q2r2 - 1)

2q2r(r- 1)
> 1. (6.87)

Integration of Equation 6.83 yields

t23 =el---log (6.88)

Combining Equations 6.80 and 6.88 gives the limit-cycle period (TLc = 2_/_o)

2 logTLC = 2(t12 + t23) =-_-
[q2r(2 - r) - 1_[q + _ I

(6.89)

3. Sample Calculation at the Earth-Moon L 2 Point

As an example of the usefulness of the approximate formulae given above, consider the on-off con-

trol of a satellite in the vicinity of the Earth-Moon L 2 point (BL2 -- 3.1904, E = 2.7168). By specifying the

amplitude ratios, x2/x 1 = 2 = q, and x3/x 1 = 2.5 = qr (therefore r = 1.25), Equation 6.89 gives TLC -- 1.407=

6.12 days. The fraction of the total time that the control is on can be determined from Equations 6.80 and
6.88:

t23
m =--= 0.4512 . (6.90)

t12

This means that the control is turned on continuously for a period of 2.76 days. For thrust periods of this

duration, an electrical propulsion device would probably be utilized. Measurement accuracy considerations
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influencethechoiceof x 1 (Xmin). If x 1 : 10 kin, then x 2 -- 20 km, x 3 -- 25 km, and Equation 6.86 gives

Kcx -- 2.798 x 10-7g. However, the average control acceleration is only Kcx = mKcx -- 1.262 x 10-Tg.

Finally, the slope of the switching line is taken as h = 3, and simple calculations yield _d =- 1.561 x 10 -4

and _-- 1.224 x 10 -4 .

The values listed above for Kcx, k, _d' and 3 were used in an analog computer simulation of the

coupled system (Equation 6.1). It was found that the error in TLC was about 14.1% of the true value

(TLC)compute r -- 1.233 -- 5.36 days. Additional results of this simulation are shown in Figure 6.11. Notice

that x3/x 1 is very close to the value used in the single-axis approximation (qr -- 2.5).

versus x. :_ versus y.

Grid size is 0.027 m/sec × 10 kin.

y VerSUS X.

Grid size is 10 km× 10 km

Figure 6.11-Analog computer simulation of Equation6.1 for sample calculation at the Earth-

Moon L 2 point. All trajectories are clockwise.
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CHAPTER VII

STABLE CABLE

Consider two satellites of equal mass that are connected by a light cable of adjustable length. Is it

possible to stabilize the position of the mass center of this configuration in the vicinity of a collinear libra-

tion point by simply changing the length of the cable with an internal mechanism? This intriguing possibil-

ity is examined below, and it is found that positional stability can be achieved by varying the length of the

cable in a manner that takes advantage of the nonlinearities of the modified potential field in the vicinity of

the libration point.

This problem was originally analyzed by Colombo (Reference 3), who also concluded that appropria, te

variations in the length of the connecting cable would produce positional stability. However, Colombo's

analysis considered only linear variations of the modified potential field in the vicinity of the libration

point, and it can be shown that his conclusion was based on a fallacious argument. (The adjustable length

cable was treated as a workless constraint.)

A. Stabilization Procedure

In this section, the control logic for the cable variation is formulated, and the stability of the resulting

system is examined. The geometry for the cable-connected satellite in the vicinity of a collinear libration

point is shown in Figure 7.1. If the mass of the cable is neglected, the equations of motion for the cable-

connected satellite are approximately (terms higher than second order are neglected in Equation 2.43, and it

is assumed that p = v = 0)*

- + -

"]'1 + 2:_:_1+ (BL - 1)y_. ¥ 3CL X'lY'1 : F y ,

y_ + 2]:'2 + (BL - 1)y_ T 3CLX'2y'2 -- - Fy,

(7.1)

and
7/1+ BL Z'I _- 3CL X'lZ'I : Fz '

Y,_+ BLZ'2 T 3CLx_Z_ =-F z,

*The upper signs hold at L2, and the lower signs at L1.
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where

F -- Fxi + Fyj + Fzk, (7.2)

and the tension in the cable is

T : inF. (7.3)

Although fluctuations of the tension will occur when-

ever the cable is extended or retracted, it is assumed

here that some tension will always be present; i.e.,

the cable does not become slack.

1. One-Dimensional Analysis

To gain some physical feeling for the sta-

bilization procedure, an approximate, one-dimensional

analysis is presented before considering the more

complicated, three-dimensional system.

Shifting equilibrium point

Figure 7.1-Cable-connected satellite in the vicinity

of a collinear libration point.

Neglecting all coupling terms and as-

suming that the motion is limited to the x'-axis

reduces Equation 7.1 to

)_ - (2BL + 1)x_ _+3CLXi2= Fx
and (7.4)

_ - (2B L + 1)x_ + 3CLX_2 -- -F x.

Elimination of F x gives
/

X 1

Assume for the moment that the mass center of the satellite is at Xcm' -- + a, and that the cable length _ is a

constant (_ = a). In this case

_a+
x]= 2_a

and (7.6)
a

x_ :y+ a.

For equilibrium 2_ = _ = 0, and using Equations 7.5 and 7.6, it is found that

(2B L + 1) 1 _(_2BL + 1)2 71/2

_] 3CL a 2. (7.7)a- 6c,. +1)
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Therefore, because of the nonlinear effect, the equilibrium point for the cable-connected satellite is depend-

ent on the length of the cable.

To see how stabilization of the mass center might be attained by taking advantage of this con-

sequence, consider a satellite near an L 2 point with an initial cable length of _(0) = a i, and a corresponding

equilibrium point at Xeq(0) -- a i. Because of the natural instability of the instantaneous equilibrium point
x' the mass center will always experience a repelling acceleration relative to this point. Now suppose

eq'

that the mass center is initially located at Xcm(0) = ai + e(0), and assume that Xcm(0) -- E(0) = 0. If e(0) > 0,

the initial acceleration is i_cm(0) > 0, and Xcm will increase. However, by extending the cable, Xeq can be

increased, and it may be possible to shift the equilibrium point to the other side of the mass center; i.e., at

some time tf, Xeq(tf) > a i + E(tf). This shift would decelerate the mass center, and if e(0) is not too large,

the motion of the mass center could be reversed. If E(0) < 0, the initial acceleration is i_m(0 ) < 0, and X_m

will decrease. With this initial condition, the appropriate shift of the equilibrium point would be achieved

by retracting the cable [notice that the equilibrium point cannot be shifted to the other side of the mass

center when e(0) <- ai].

Naturally, the magnitudes of the initial errors [e(0), _(0)] that can be tolerated with this stabi-

lization method are bounded. This limitation will be discussed in Section B.1 of this chapter.

Cable control

For convenience, the coordinate translation

x' = x t a (7.8)

is introduced. With this translation, Equation 7.5 becomes

Xl + x2 - (2BL + 1)(Xl + x2-+ 2a)-+ 3CL[X2 + x_+ 2a(xl + x2)+ 2a2]- - 0, (7.9)

and the equilibrium solution is

a

Xl= 2

and (7.10)

This equilibrium solution is unstable if the cable length is constant, but the situation is quite different

when the cable length is varied according to the control law

_-_-x 2-x 1-- [a + b(x l+x2) + c(:_ 1 +_2)].
(7.11)

The form of this control law has been influenced by the qualitative arguments of the previous section.

Stability conditions for the constants a, b, and c can be determined by investigating small

motions about the equilibrium solution of Equation 7.10. Substitution of
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a

and (7.12)

intoEquations7.9and7.11[neglectingtermsof 0(_:2)] gives

and

_1 + _2 - (2BL + 1)(_1 + _2) ± 3CL[a(_e - _1) + ea(_ + _2)] : 0 (7.13)

(_2 - _1 ) : + b(_:l + _2 ) + C(_l + _2 )"

The coordinate for the mass center is

(7.14)

Xl+X2 _1+_2
---- (7.15)

Xcm - 2 2

From Equations 7.13, 7.14, and 7.15, it is clear that

"_cm + 3CLaCXcm +[3CL(ab + 2a)-(2BL + 1)]Xcm--0. (7.16)

Therefore, the mass center is asymptotically stable if

and

ac > 0 (7.17)

2B L + 1
(ab + 2a) > (7.18)

3C L

The constant a can usually be neglected in Equation 7.18, and this stability condition can be approximated

by

For the Earth-Moon L 2 point (BL2

2B L + 1
ab > -- (7.19)

3C L

= 3.1904, CL2 = 15.845), Equation 7.19 gives ab > 0.155.

. Three-Dimensional Analysis

Using the coordinate transformation (cf. Equation 7.8)

x' -- x + a, y' = y, z' = z

in Equation 7.1 gives

Xl- 2):'1- (2BL + 1)(xl +-a)+3CLI2x21+ 4axl+ 2a2-(y2+z2)] = Fx,

(7.20)
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and

x2 - 2Y2 - (2BL + 1)(x2 + a) ---_VLU 2 - 4aX2 + 2a2

91 + 2:_1 + (B L - 1)y 1 -7 3CL(X 1 + a)Y 1 = Fy,

92 + 2_2+ (B L - 1)y 2 T- 3CL(X 2 + a)Y 2 = -Fy,

(7.21)

zl + BLZl -7 3CL(X 1 + a)z 1 = F z,

Z2 + BLZ2 -7 3CL(X2 + a)z2 = - Fz'

where a is given by Equation 7.7.

tion of Equation 7.21 is

and

For a cable length _ = a, it is readily verified that an equilibrium solu-

a a

yl= Y2= Zl= Z2:0.

(7.22)

This equilibrium situation is depicted in Figure 7.2. Notice that stabilization about this equilibrium solu-

tion must control the relative orientation of the cable-connected satellite as well as the position of its mass

center.

The cable control law for the three-dimensional case is not obvious, but after a few trials, a satis-

factory control law was devised. This control law is given by

 2:(x2_xl)2 yl) +

: [a _+b(x_+ x2)± c(_ + _2)+ _(Y_- Y2)]2' (7.23)

where a, b, c, and/3 are constants. It is hoped that the reasoning behind this particular formulation will be

made clear by the stability investigation presented below.

Before proceeding to the stability analysis, some useful equations are obtained. Using Figure 7.1,

it can be verified that (check Equation 7.2 and 7.20)

Fx x2- xl (7.24)

Fy = -Y2 - Yl'

Fx x2- Xl (7.25)

F z z 2 - zi

and

Rearrangements of Equation 7.21 give

Fy Y2- Yl (7.26)

Fz z 2 - zI
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(7.27)

Yl + Y2 + 2(:_1 + :_2) + (BL - 1)(Yl + Y2) T- 3CL[(X 1 + a)y 1 + (x 2 + a)y2] = 0, (7.28)

_l÷_ ÷_,.(zl+z_)T3cL[(xI ±.)zl +(x2±a)z_]:O,

•4o x, f

(7.29)

(7.30)

and
2Fy = "Vl - "v2 + 2(_:1 - "x2) + (BL - 1)(Yl - Y2) ¥ 3CL[(_x 1 +-a)Y 1 - (x 2 t a)Y2] '

2F_:_1-_2÷BL(_i-z2)T3cL[(xi±_)zi-(x__+_)z2].

(7.31)

(7.32)

For small motions about the equilibrium solution of Equation 7.22

a a
xi : -E + 4i, x2 :-_+ 42,

Yl = _]I' Y2 = q2' (7.33)

Z1 : CI' Z2 -- _2"

Substituting Equation 7.33 into Equations 7.23, 7.27, 7.28, and 7.29, and retaining only linear terms in (_=,
_/, 0 gives

yt y

MASS CENTER

db,

(, (,___o/2,y___o,,_oo_x)"
(xi=-o/2,Yl=0,z,=0)

XII X

r

Figure 7.2-Equilibrium situation for the cable-

connected satellite near an L 2 point.

(_:1 - _=2) -+ b(_:l + 4r2) -+ c(_1 + _2 )

+/_(ql - q2 ) = O, (7.34)

_1 + _2 - 2(ql + ;12) - (2BL + 1)(_1 + _2 + 2a)

+ 4a(_1 + _=2) + 4a2]: O, (7.35)

(,o)J-T3C L + ql + + q =0, (7.36)
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and

C1+Ce +BL(Q +C2) T-3cL 2- +- C :o.
(7.37)

Two more equations are obtained by eliminating F x, Fy, and F z in Equations 7.24, 7.25, 7.30, 7.31, and

7.32. Again keeping only linear terms in (_, _/, _), this yields

and

3
i72 - _1 + 2(s_2 - _1 ) -T--2CLa(_?I + _72) + 3(BL - 3CLa)(Y2 - _?1) = 0

(7.38)

(7.39)

Equations 7.34 to 7.39 constitute six independent equations for the six unknowns (_1' _2' _?1' 7/2' _1' _2 )"

These equations will be used to test the stability of the controlled motion of the cable-connected satellite

about the equilibrium solution of Equation 7.22.

The linearized motion out of the xy-plane is uncoupled, and the characteristic equation for this

motion can be determined from Equations 7.37 and 7.39. A simple calculation gives

s 4+als2 + a 2= 0,
(7.40)

where

and

a 1 -- (4B L + 1) - 12Cca
(7.41)

(7.42)

Terms involving a and a 2 can usually be neglected, and the roots of Equation 7.40 are approximately -+JV_L,

+_jV_L+ 1 (j - V_). Therefore, according to the linearized analysis, the out-of-plane motion of the cable-

connected satellite is bounded. However, small oscillations, which could be caused by initial-condition

errors, cannot be damped by the cable control.

The characteristic equation for the coupled motion in the xy-plane is obtained from Equations

7.34, 7.35, 7.36, and 7.38. After some tiresome manipulations, it is found that

s 6 + b 1s5 + b2s4 + b3s3 + b4s2 + b5s + b6 = O,
(7.43)

where

b 1 = 3CLaC - 213,
(7.44)

b2 -- (k 2 + k 3 + 4 - k 1) + 3CLab,
(7.45)

b 3 : 3CL(k 2 + k 3 + 2)ac + 2_1 - (k 2 + 4)]i3,
(7.46)
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i :'L/I

_9_2_2
b4 = k3(k 2 + 4) - kl(k 2 + k3) 4 _L_ + 3CL(k2 + k3 + 2)ab, (7.47)

and

and

b5= 3CL(k2k8-9CL2a2)ac + 2(klk 2 +_C2a2)fi, (7.48)

b6 = (k2k3 -9 C_a2)(3CL ab -kl), (7.49)

k 1 =- (2B L + 1) - 6CLa, (7.50)

and

k2-(B L- I)-3CLa,

k 3=-3B L-9CLa.

(7.51)

(7.52)

The determination of suitable values for the control parameters b, c, and/3 can be accomplished in an effi-

cient manner by employing the root-locus technique. Taking c = ]_ = 0, Equation 7.43 is written in the form

3CLab[s4 + ClS2 + c2]

s 6+ dlS4+ d282+ d 3
= - 1, (7.53)

where

c I = k 2 + k 3 + 2, (7.54)

c 2 k2k 3 -9C2a2-- 4 L ' (7.55)

d I --k2 + k 3 + 4 - k 1, (7.56)

and
d2 = - l(k2 + k 3) - k3(k 2 + 4) - 4 VL'* J' (7.57)

d3 = _ kl(k2k 3 _ 9(,2 _2_4 _L_ ]" (7.58)

A root-locus plot of Equation 7.53 for the Earth-Moon L 2 point is given in Figure 7.3.* The root-locus plot

shows that the system is neutrally stable when ab > (ab)3 -- 0.600. Notice that (ab)2 corresponds to the

critical gain for the one-dimensional case, i.e., (ab)2 _ (2B L + 1)/3C L (cf. Equation 7.19). The critical

gains (ab)2 and (ab)3 are listed in Table 7.1 for several libration points. In every case, (ab)3/(ab)2 < 4, and

it can be concluded that neutral stability is insured at any libration point when

*It was found that the contributions of terms involving a 2 and a were negligible for the values of a that are used in

the present study. With a = 0 in Equations 7.54 to 7.58, the critical gains are (ab)l = 0.084, (ab)2 -- 0.155, and (ab) 3 =
0.600. For a = 10--2 in Equations 7.54 to 7.58, the critical gains are (ab)l = 0.085, (ab)2 = 0.155, and (ab)8 = 0.599.
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Figure 7.3-Root-locus plot for Equation 7.53 at the

Earth-Moon L 2 point (BL2 = 3.1904, CL2 = 15.845).
Gain is ab.

4(2B L + 1)
ab > (7.59)

3C L

and

Damping is introduced by choosing appro-

priate values for the control parameters c and ft.

For this case, Equation 7.43 is written as

where

3CL aC[b'lS4 + bibs2+ " ,, oo)
s 6+ b2s4+b4s2+b 6

and

I

b I = 1 - 2fi', (7.61)

/

b8 = (k 2 + k 3 + 2)

+ 2[k I -(k2+ 4)_/3', (7.62)

+ 2(ki% +29-C2a2 ""Lf" (7.63)

fi' - (7.64)
3CLaC"

It should be emphasized that both c and fi are needed in Equation 7.43 to obtain a damped system. The

Parameter fi' (which determines _) must be chosen so that the zeros in Equation 7.60 are located between

the poles on the imaginary axis. (This pole-zero configuration is not possible when fi' -- 0.) If this is not

done, a segment of the root locus of Equation 7.60 will be in the right half of the s-plane.

Table 7.1-Critical gains for cable-connected satellite.

Libration point

Earth-Moon L 1

Earth-Moon L 2

Sun-Mercury L 2

Sun-Venus L 2

Sun-Earth L 2

Sun-Mars L 2

Jupiter-Io L 2

Jupiter-Ganymede L 2

Jupiter-Eneeladus L 2

(ab) 3

0.651

.600

.0144

.0355

.0380

.0181

.0882

.114

.0140

(ab) 2

0.175

.155

.00378

.00932

.00999

.00475

.0232

.0298

.00369

(ab) 3

(ab) 2

3.72

3.87

3.81

3.81

3.80

3.81

3.80

3.83

3.79
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Byfixing thevaluesof aband_', a root-locusplotof Equation7.60for thegainaccanbecon-
structed.Theplot for the Earth-MoonL2 pointwith ab--0.750and /3' -- 0.200 is shown in Figure 7.4.

Although more damping would be desirable, the system is asymptotically stable for all values of the gain ac.

When ac = 0.100, the roots are located at -0.0475 i j 1.2249, -0.7595 -+ j3.8841, and -0.4764 i j4.9958, and

from Equation 7.64, f_ = 0.951.

B. Other Considerations

Although the stability of small motions about the equilibrium solution of Equation 7.22 has been estab-

lished, several questions concerning the theoretical feasibility of the cable control system are still unan-

swered. Some of these questions are considered in this section.

1, Cable Extension Limitation

The extension of the cable is made possible by the gravitational gradient in the vicinity of the

libration point. Therefore, the acceleration of the cable's length g is bounded [_max _= (2BL + 1)_].* This

restriction has the effect of placing upper bounds on the initial errors that can be tolerated with the cable

stabilization technique. In this section, approximate analytical estimates of these error bounds are obtained

by using the one-dimensional model of Section A.1 of this chapter.

tot

Denoting initial values with a subscript i, the coordinate translation of Equation 7.8 is specialized

x' = x + a i. (7.65)

The coordinates of the two masses are

Xl=-q+e

and (7.66)

x2=q+e.

Initially, it is assumed that q(0) = ai/2, _(0) = 0, and e(0) _ O(a2).

tion 7.4 gives (using Equation 7.65)

and

Substitution of Equation 7.66 into Equa-

q2+ +e2+ +e)+a_l =-

_"1

+ ¥ - (2BL2 + 1)(q + e + a i) + 3CL2 2qe 2ai(q "_J F x

(7.67)

(7.68)

If terms of O(a/2) are neglected, Equation 7.67 or Equation 7.68 yields

-(2BL2+I)q---F x. (7.69)

*When the cable is retracted, _max is determined by the tensile strength of the cable.
SFor clarity, double signs are deleted, and the analysis is limited to an L 2 point.
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Figure 7.4-Root-locus plot for Equation 7.60 at the

Earth-Moon L 2 point (BL2 = 3.1904, CL2 = 15.845).
Gain is ac, ab -- 0.750, and fi' = 0.200.

During the cable extension period (0 _< t _< t 1) it is
assumed that

F x = (1 - y)(2B/2 + 1)q = 0, (7.70)

where 0 < y < 1. Equation 7.69 can now be written

as

_i - y(2BL2 + 1)q = 0, (7.71)

and with the initial conditions given above, the

solution is

a i

q(t) =-_-cosh kt (7.72)

and

ka i

_(t) =-_- sinh kt, (7.73)

where k 2 =_y(2BL2 + 1). When the cable is fully ex-

tended, q(tl) = am/2, and the extension time t I can
be obtained from

1
cosh kt 1 =7' (7.74)

where 8 _- ai/a m (0 < 8 < 1).

To find the motion of the mass center, add Equations 7.67 and 7.68 and neglect terms of O(a3).

This yields (using Equation 7.7)
\-/

Iq2 _/2]= 0.- (2BL2 + 1)e + 3CL2 - (7.75)

For the cable extension period (0 __<t _< tl), Equation 7.75 is

+ 3 2a 2
"_- (2BL2 + 1)e _CL28 m(cosh 2kt- 1)

The solution of Equation 7.76 is given by

where

= 0. (7.76)

e(t) = [e(0) + (A + B)] cosh k't + _(_Ck,)sinh k't - (A + B cosh 2kt),

k '2 = (2BL2 + 1),

(7.77)
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and

t-' _282
_L2 _ m

A-
8(2BL2 + 1)'

B __

r _2a2
_L2 v m

8(2BL2 + 1)(4y- 1)"

After the cable has been fully extended (t _> tl), Equation 7.75 becomes

3 2
"/- (2BL2 + 1)e +-_CL2am(1 - 82) = 0. (7.78)

The solution of Equation 7.78 is

J  (tl)e(t)= (t 1)-A coshk'(t- tl)+_r- sinhk'(t-tl)+A',
(7.79)

where

acL2a (1 - 82)

4(2BL2 + 1)

The maximum allowable initial conditions [e(0), _(0)] are determined by assuming that, at some

time t2

2) = o
and (7.80)

,._ 3CL282( 1 - 82)
._ d I "

e(t2)=am-ai- 4(2BL2+ 1)

Using Equation 7.80 in Equation 7.79, it is readily deduced that

tanh k'(t 2 - t 1) = k'_'- e(tl) ] - 1.
(7.81)

Finally, with the aidof Equations 7.74, 7.77, and 7.81, it is found that

e(O) + _/2BL2 + 1 8(2BL2 + 1) G()/, _), (7.82)

where

G(y, 8) = e-k'tlf2 - 82) 82 2ktl)] 4_/_2
(47 - 1)(cosh 2kt I + 2V_-sinh (47 - 1)"

(7.83)

When _(0) ; 0, the ratio e(0)/e(t 2) may also be of some interest. From Equations 7.80 and 7.82, this can be

written as
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40) G(y,
 (t2) 2(1 -

(7.84)

Graphs of G(y, 6) and e(0)/e(t 2) are given in Figures 7.5 and 7.6, respectively.

From Equation 7.82 and Figure 7.5, it can be seen that the allowable initial conditions are maxi-

mized by choosing Y = 1, 6 _ 0.55, and letting a m become very large. However, other factors call for small

values of a m and y and larger values of 6.* These tradeoffs are not investigated here.

As an example, consider a cable-connected satellite at the Earth-Moon L 2 point. For 7 -- 0.50,

-- 0.8, and a m = 10 -2 = 3844.05 km, it is found that G(y, 6) =_ 0.375, a i -- 3075.24 km, and a i = 39.61 km. If

t(0) = 0, e(0) -- 11.60 kin, and e(t2) = 22.28 km. If e(0) = 0, ;(0) = 0.0839 m/sec. Although this cable is rather

long, significant reductions of the cable's length will require high measurement accuracy; e.g., e(0) = 0.725

km for a m = 961.01 km.

2. Structural Comments

The structural aspects of extremely long, cable-connected satellites have received some attention

in the literature (References 82 and 83). In Reference 83, the mechanical design of a device that would vary

the length of the cable has also been considered.

These studies have indicated that similar design

problems for the cable-connected satellite proposed

in this chapter would not be insurmountable.

To provide some idea of the magnitudes

of the structural parameters for a cable-connected

0.6

0.2

f

iJ
},0 / .._

J
._''_ _ y=0,2

0.2 0.4 0.6 0,8 1.0

Figure 7.5-The function G(),, _).
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Figure 7.6-Mass center displacement ratio e(O)/e(t 2)

-- 2) --o].

*One of these factors is the impulsive deceleration that takes place when the cable reache_ its maximumlength at

t = t 1. From Equations 7.73 and 7.74, this impulsive deceleration is given by Ax2(tl) = ½am[3_(2BL2 + 1)(1 - _2)]1/2. In

actual practice, the deceleration will be distributed over a finite time interval that is determined by the maximum tensile

strength of the cable. This deceleration period is neglected in the analysis presented in this section.
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satelliteat theEarth-MoonL 2 point, a few representative calculations are presented here. For the purposes

of this calculation, it is assumed that

(1) m = 10000 kg.

(2) The cable is an aluminum wire (modulus of elasticity -= EAI = 1.03 × 107 psi, density _ PAl --

2.70 gm/cm 3, and ultimate tensile strength _=aA1 -- 30000 psi).

(3) The nominal length of the cable is l -- 3844.05 kin.

(4) The cable tension is never greater than 10 times its nominal value.

With these assumptions, a few elementary calculations give*

Tno m = m(2BL2 + 1) = 1.005 x 105 dynes (nominal cable tension),

and

aA1
ades- 10 - 3000 psi (design stress),

dc = 6.22 × 10 -3 cm (cable diameter),

m c = 504.15 kg (mass of cable).

*It has been suggested to the author that the time delay, due to the finite propagation speed of a longitudinal wave
in the cable, could be troublesome. However, the propagation speed is just _ = 5.12 km/sec, which corresPonds
to a time delay of t d = 12.5 minutes for a cable length of _ = 3844.05 kin. This time delay is clearly negligible.

102



CHAPTER VIII

APPLICATIONS

In this chapter, a number of possible applications for libration-point satellites are presented. Some of

these proposals are original, while others are derived from previous suggestions. It is not the author's in-

tention to present an all-inclusive list, but rather to give some indication of the usefulness of libration-point

satellites.

A. Supporting Role for Lunar and Planetary Hissions

1. Utilization of the Earth-Moon Collinear Points in Future Lunar Operations

Lunar communications

In the post-Apollo period, with the advent of semipermanent lunar bases and far-ranging sur-

face vehicles, a capability for real-time communications between widely separated lunar terminals will be

needed. For bases located on the far side of the Moon, an uninterrupted communications link with the Earth

would also be desirable. In this section, it will be shown how these communications requirements can be

satisfied by stationing relay satellites in the vicinity of the collinear libration points of the Earth-Moon

system.

The possible use of libration-point satellites for communication between points on the lunar

surface was first mentioned by Arthur C. Clarke (Reference 9) as early as 1950. However, it has been only

recently that methods for using a single libration-point satellite to establish a communications link between

the Earth and the far side of the Moon have been devised. Two of these methods, the "Lissajou orbit" and

"halo orbit" concepts, were originally proposed by the present author in Reference 7. Another technique,

the "hummingbird" concept, has been presented by Vonbun (Reference 18). A comparison of these methods

is given below.

Lissajou orbit concept. Consider a satellite that is following a quasi-periodic orbit about

the Earth-Moon L 2 point. Neglecting higher order corrections, the equations of the orbit are (see Chapter III)

x n _= Axl sin con t

and (8.1)

Yn =_Ay i cos con t,
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whereAxl = kAy 1, k = 0.343336, and (% = 1.86265. The geometry for this orbit is given in Figure 8.1. If

the satellite is simultaneously executing an out-of-plane oscillation, then (cf. Equation 3.29)

z n = Azl cos (O)zt + ao), (8.2)

where ¢oz = 1.78618 and a0 is the initial phase angle. The trajectory of the satellite as seen from the Earth

is just a Lissajou curve, and is depicted in Figure 8.2. Because the frequency difference between the peri-

odic orbit and the z-axis oscillation is very small, the trajectory in Figure 8.2 can be viewed as a slowly

changing elliptical path.

To set up an efficient communications link between the Earth and the far side of the Moon,

the satellite should perform oscillations that are large enough to be visible from any point on the Earth fac-

ing the Moon (see Figure 8.3). Neglecting the small correction for Axt, the radius of the occulted zone for

Earth visibility is

AM$% XL2(Re +R:_) + R_= 8099 km, (8.3)

MOON

_kEARTH-MOON AXIS / _ ....

L2 AMLI x

"_--_TO EARTH _ PERIODIC ORBIT _._y

_'_ "7"LIR =l: 7"L2 R _1 I_AXl

Figure 8.1-Geometry in the Moon's orbital plane.
Not to scale.

where R e -- 6371 km and R)= 1788 km (Reference

28). Slightly larger oscillations by the satellite

near the L 2 point will enable it to obtain line-of-

sight contact with the L 1 point as well as the Earth.

By augmenting the oscillating satellite with a sec-

ond satellite stationed at the L 1 point, a surface-to-

surface communications link between the near and

far sides of the Moon could be established. (This

possibility was originally discussed by the present

author in Reference 16.) Using Figure 8.1, it is

easy to see that the radius of the occulted zone for

this case is

y

I OCCULTED

I ZONE \ j /

SATELLITE

Azl

_ Ay I b

Figure 8.2-Satellite trajectory about the L 2 point as
seen from the Earth. Not to scale.

,._ YL1 + )/L2 R)= 3671 km. (8.4)
AMLI._ 7L1

Unfortunately, the oscillating sat-

ellite will still enter the occulted zone at periodic

intervals. The fraction of the total time that the

satellite will be hidden is approximately (using

Equations 8.1 and 8.2 and Figure 8.2)

ry z = --_ sin- sin- 1 .
(8.5)

For AM¢ = 3099 km and Ay 1 = Azl = 0.02 = 7688 km,

this fraction is only ry z % 0.070, i.e., 7% of total

time. However, occultation periods as long as
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Figure8.3-Geometryfor Earth visibility. Not to
scale.

ty = (2/o) n) sin- 1 (AM$/Ayl) _ 1.94 days will occur

periodically. Because this time is rather long, some

means for completely eliminating this occultation

would be useful.

The satellite's motion relative to

the quasi-periodic orbit can be controlled by any of

the methods discussed in Chapters IV to VI. If the

radial-axis control of Figure 5.1 is employed, the

station-keeping cost could be as low as IFcxl =

8.86 x 10-9g (see Section A.1 of Chapter V). Of

course, this low cost can only be realized when higher order corrections are included in the nominal path

calculation (see Chapter III).

Phase-jump control is one method to prevent occultation of the satellite oscillating about

L 2. Whenever the satellite is about to enter the occulted zone, a control pulse is applied to alter the phase

angle, but not the amplitude, of the z-axis oscillation so that the portion of the trajectory that passes through

the occulted zone is bypassed. This change in phase angle is accomplished by impulsively reversing the

direction of z without changing its magnitude (see Figure 8.4). From Equations 8.1 and 8.2, the parametric

equations for the trajectory shown in Figure 8.2 can be written as

Yn = Ayl cos COnt

and (8.6)

z n = Azl cos (e)nt + a),

where a - a 0 - et and e _- _on - _oz = 0.07647. Since e is small, the phase angle a will be approximated by an

average value through one cycle. If a c is the phase angle for the cycle that just misses the occulted zone,

the magnitude of the control impulse is (see Figure 8.4)

[A2n[ = 2oJnAzl sin a c, (8.7)

and since pulses must be imparted at intervals of

- 2%
At -----,

E

(8.8)

the average control acceleration is given by

2eo)nAzl sin a c

IF_zl : _ - 2%
(8.9)

It follows from Equation 8.6 and the geometry of Figure 8.2 that

2r2- - (,421+ A21)+ (Ay21+ A21 cos 2a)cos 2oJnt - (,421 sin 2a)sin 2c%t, (8.10)
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wherer is theradialdistancefromtheoriginto thesatellite.
zone

2A_= (,421+ Az21)- [(/12+ 2 2%)2+ (.421 sin 2ac)2] _/eyl Azl cos

1/2

Azl [ h2-1 1]
A M - 2 sin 2 ac _

For a trajectory that just touches the occulted

(S.ll)

(8.12)

where h - (Ayl/AM). Substitution of Equation 8.12 into Equation 8.9 yields

]F cz I = 2ea)nAMf(k , ac), (8.13)

where

(h2 _ 1) 1/2 sin a c

[(h, ac) =- . (8.14)

(rr- 2acXh 2 sin 2 a c - 1) _/e

For a fixed value of h, there exists a unique value of %, which minimizes the average control acceleration.

An elementary analysis shows that this optimum value must satisfy the transcendental equation

2(h 2sin 2a c- 1) tana c=77-2a c. (8.15)

The phase angle satisfying Equation 8.15 is given in Figure 8.5 as a function of h.

Up to now, the higher order corrections to the trajectory of Equation 8.6 have been ne-

glected. When these corrections are superimposed on the approximate trajectory, the occultation geometry

will become more complicated. A simple way (possibly not the most efficient) to account for this complica-

tion is to define a new value of A M (denoted by A_) in such a way that the true trajectory will not enter the

i

I

2

original occulted zone solong as the approximate tra-

jectorydoes not enter an occulted zone of radius A_.

2.0

1.6

0.8 _

o r ----r( + ac ) 0.4 ----

1.0 1.5 2.0 2.5 3.0 3.5 . 4.0

),
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Figure 8.4-Phase plane representation of the control

impulse.



In ChapterIII, it wasfoundthattheamplitudecorrectionscausedbythelunareccentric-
ity weremuchlargerthanthosefromothereffects. Therefore,amplitudecorrectionsfromeffectsother

/

than the lunar eccentricity will be neglected here. Using the results of Chapter III, A M is taken as*

AM (8.16)
AM = AM +/3AY 1 1 -/3h"

where h' - (Ayl/A' M) and fi _ 0.17. Replacing A M in Eqhation 8.13 by A_ from Equation 8.16 gives

f(_', %)
A

IFczl = 2e_ndM 1 - /3X' =-2e_n Mg(h ' ac' /3).
(8.17)

The function g(h', %,/3) for optimum values of a c is plotted in Figure 8.6 as a function of h'. For/3 -- 0.17,

a nearly optimum value of g(h', a c,/3) is obtained by taking _' -- 2. With AM$ = 3099 kin, it is found that

] _AMe 4695 km, ac _- 43.17 °,

Ay 1 : 9391 km, Azl = 8708 kin,

At = 93.04 days, IA2nl = 59.08 m/sec,

and

I-Fczl = 7.50 × 10-7g.

Halo orbit concept. Occultation of the satellite oscillating about L 2 can also be averted

by using a frequency control technique. In this scheme, a single-axis control is used to synchronize the

fundamental )'-axis and z-axis oscillations. In other words, if higher order trajectory corrections are ne-

2"/
20 /\

k6--_

_' i.a

\
-_=0.17 m

f
J

0.8 _'_
_ __....

0.4 J_=O j

0
1.0 1.5 2.0 2.5 3.0 3.5 4.0

X'

Figure 8.6-The function g(h', %, /3) for optimum

values of %.

glected, the control will produce a closed ellipti-

cal path in the ),z-plane that always avoids the

occulted zone. Although frequency control can

be applied in any axis, the cost will be different

for each case. Minimum costs for three important

cases are given below. As in the previous sec-

tion, the effect of the eccentricity correction is
I

included by using A M for the radius of the oc-

culted zone.

The frequency control method is

most easily understood by examining the case where

z-axis control is employed. In this case, it is as-

sumed that the approximate satellite orbit in the

x),-plane is given by Equation 8.1 with Ay 1 >_ A" M.

The z-axis control is used to force the satellite to

follow the path

!

*The eccentricity correction for the z-axis oscillation is given in Appendix B. For this case, A M = A M + flAzt,

where fl _ O. 16.
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Zn = A M COS C_nt,

(i.e., a feedback control is used to zero the coordinate _, where _ -- z - zn).

change is given by IFczl, where Fcz= Kcz cos _%t.* Because

Zn + BL2Zn = Fcz = Kcz cos O)nt,

it is easy to show that

(fig 0.16 for the z-axis). Therefore, the average control acceleration is

3.10 to 3.12)
x

(8.18)

The cost for the frequency

(s.i9)

(8.20)

/_-)g 0.2ii5 (8.21)IFczl :- cz -- A M •

Similarly, for a y-axis control, Fcy -- Kcy cos o)zt, and it is found that (using Equations

IFcy[ -- 0.1589 A M. (8.22)

With y-axis frequency control, IAxl/Ayl[ = 0.3379 (IAxl/Ayl] = 0.3433 for the natural oscillatory mode).

For an x-axis control, Fcx= Kcx cos o)zt, and a simple calculation gives

IFcxl = 0.4703 A M,

with [Axl/Ayll : 0.2799.

Taking AM$

and

-- 3099 km, Equations 8.21 to 8.23 yield

IFcz[ = 4.73 x 10-7g,

IFcyl -- 3.56 × 10-7g,

]Fcx I -- 1.05 x 10-6g.

(8.23)

Hummingbird concept. In both of the concepts presented above, an "orbiting" satellite

was used to set up a communications link between the Earth and the far side of the Moon. However, this

communications link can also be obtained by using a satellite that is permanently displaced to one side of

the Earth-Moon L 2 point. In this case, a continuous thrust control is needed to station the communications

satellite at the nonequilibrium position. The control acceleration can be minimized by displacing the satel-

lite along the y-axis, and is approximately (see Equation 5.22 and Figure 5.4)

*It is assumed here that noise inputs are negligible (see Section A.2 of Chapter V).
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7'

IFcl % IFcyl % (BL2 - 1)Sy :- 2.1904 _y.
(8.24)

When 3y -- AMe = 3099 km, Equation 8.24 gives IFcl = 4.90 × 10-6g.

Although the displaced satellite would be stationary with respect to the libration point,

its distance to the Moon would vary periodically because of lunar eccentricity. Of course, a constant dis-

tance between the satellite and the Moon could be maintained by simply canceling the eccentricity effect

with additional thrust control. A rough calculation shows that the average control acceleration for this task

would be about IFcl _ 1.20 x 10-5g.

Comparison of different techniques. It is clear that, of the three procedures considered

above, the halo orbit concept with y-axis control is the most economical method for maintaining a continuous

Earth-to-lunar far-side communications link. However, the cost for the halo orbit concept with z-axis con-

trol is only slightly higher, and other factors may influence the choice between the y-axis and z-axis con-

trols. The cost for the halo orbit concept, with either y-axis or z-axis control, is lower than the cost for the

hummingbird concept by an order of magnitude.

If occasional occultation periods can be tolerated, the Lissajou orbit concept should be

considered. Uninterrupted communications would still be possible for intervals of about 3 months, and the

station-keeping cost could be reduced by an order of magnitude. (This is two orders of magnitude below the

cost for the hummingbird concept.) For emergency situations, when longer continuous communication inter-

vals are required, the phase-jump control technique could be employed.

Concluding remarks. Methods for using a single libration-point satellite to obtain con-

tinuous communications between the Earth and the far side of the Moon have been presented. The possibil-

ity of using two libration-point satellites (one oscillating about the L 2 point while the other is stationed at

L1) to establish a point-to-point communication link covering most of the lunar surface has also been men-

tioned. The libration-point communication system would be useful during the early lunar exploration period,

but its full potential will probably not be realized until more advanced lunar surface operations are carried

out. For these more advanced missions, the libration-point network could also function as a navigation and

control center for manned and unmanned surface vehicles.

Other proposals (References 84 to 86) for obtaining Earth-to-lunar far-side and long-range

lunar surface-to-surface communication have recommended the use of relay satellites in lunar orbit. How-

ever, orbiting relay satellites have several obvious disadvantages. Some of these disadvantages are

(1) Many satellites are needed for adequate coverage.

(2) Tracking and acquisition problems are difficult. (These problems are considerably

easier with libration-point satellites, because these satellites are almost stationary with respect to the

lunar surface.)

(3) The contact time for any given satellite is relatively short, and frequent switchovers •

are necessary.

• (4) The diverse antenna pointing requirements (satellite to Earth, satellite to lunar sur-

face, and satellite to satellite) would complicate the attitude control problem.
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Althoughorbitingsatellitespossesssomeadvantagesoverlibration-pointsatellites(e.g.,communication
distancesareshorterandstationkeepingis usuallynot required),theydonotappearto outweighthedisad-
vantageslisted above.A recentinvestigationbySchmid(Reference87)hasalsoexpresseda preferencefor
the libration-pointsatellitetechnique.In Schmid'sstudy,a quantitativecomparisonof lunarfar-sidecom-
municationrequirements(power,beamwidth,antennagain,bit rate,etc.) fora libration-pointsatelliteanda
1000-kinaltitudesatellite in a circularlunarorbit is presented.

Rendezvous technique

Present plans for the Apollo lunar landing mission call for the insertion of the combined

spacecraft [command module (CM) and lunar landing vehicle (LLV)] into a low lunar orbit. The LLV will

then descend to the lunar surface, stay there for 1 to 2 days, ascend to the lunar parking orbit, and rendez-

vous with the CM. The CM will then return to the Earth.

An alternate method uses the Earth-Moon L 1 point for a rendezvous instead of a lunar parking

orbit. Although this rendezvous scheme has been examined by a number of people since 1960, the first pub-

lished work was presented by Raithel (Reference 12) in 1966. Because the libration-point rendezvous

method has several attractive advantages over the lunar orbit rendezvous method, a few comments are in

order.

In Figure 8.7, two transfer trajectories between an Earth parking orbit and the L 1 point are

illustrated. A direct transfer (trajectory #1) uses two impulses, while an indirect transfer (trajectory #2)

employs a third impulse at the closest approach to the Moon. In both cases, the velocity increment (AV) at

the Earth parking orbit is approximately equal to the AV that is required for escape velocity. A digital com-

puter simulation is needed to obtain the remaining AV's because a patched-conic approximation is not very

accurate for these calculations. Some computer results of Nicholson (Reference 88) are quoted here. For

the direct transfer, AV L1 =_2350 fps for a 4-day transit. For the indirect transfer, ZAV % 1900 fps (the AV

near the Moon is about 1000 fps, and AVL1 _ 900 fps), but the trip time is 6 days. The same AV's are

required for the reverse trajectories.

A transfer between the L 1 point and the Moon is also shown in Figure 8.7 (trajectory #3). In

this transfer, AVL1 _= 1700 fps, and the impact velocity at the Moon is about 7790 fps for a 24-hour transit.

For landing sites near the lunar equator or for surface stay times of a few days, the total AV

requirements for lunar orbit rendezvous are slightly lower than the AV requirements for libration-point ren-

dezvous. However, for landings at higher lunar latitudes or longer stay times, rather large plane changes

are often necessary, and the AV cost for these plane changes is significantly higher if lunar orbit rendez-

PARKING ORBIT

Figure 8.7-Transfer paths to and from the L 1 point
in the Moon's orbital plane. Not to scale.

vous is employed (Reference 89). In some instances,

this increased AV penalty is severe, and large por-

tions of the lunar surface are not accessible with the

present Apollo spacecraft. (An even greater restric-

tion on lunar surface accessibility is imposed by

requiring a continuous abort capability for the LLV.)

On the other hand, the AV's for the libration-point

rendezvous technique are virtually identical for any
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lunarlandingsite or staytimebecausethenecessaryplanechangescanbeaccomplishedquitecheaplyat
the L1point. This low-AVplane-changecapabilitymightverywell favorarendezvousat L 1 for lunar sur-

face missions of long duration or high latitude.

Because the L 1 point is stationary with respect to the lunar surface, the libration-point ren-

dezvous technique also has an important operational advantage, namely, an infinite launch window for the

LLV to and from the lunar surface. This timing advantage, along with the low-AV plane-change capability,

makes the L 1 point an ideal location for a lunar logistics staging depot (or a lunar-surface rescue facility).

Supplies could be transported to and from the L 1 point with reusable shuttle vehicles. A low-thrust vehicle

could be used between the Earth parking orbit and the L 1 point, but a high-thrust vehicle would be needed

for the transfer between the L 1 point and the lunar surface.

From the preceding discussion, it is clear that a comprehensive investigation of the libration-

point rendezvous concept is warranted. This investigation should consider several different transfer modes

as well as various staging possibilities. The usefulness of the L 2 point for rendezvous should also be

examined.

2. An Interplanetary Transportation System With Terminals at the Sun-Planet Collinear Points

A modified version of the libration-point rendezvous technique described above may be useful for

planetary missions. Although a large variety of mission profiles with libration-point rendezvous could be

contrived, only one possibility is presented here.

Consider a reusable shuttle vehicle that operates between the L 1 point of the Sun-Earth system

and the L 2 point of a Sun-planet system. The outbound transfer path for the shuttle vehicle is shown in

Figure 8.8; the inbound transfer path is just the mirror image of the outbound transfer path. Either a high-

or low-thrust rocket could be used to perform the transfer; but it is quite possible that a hybrid system (high-

and low-thrust) would be more efficient. The transfer of the _nterplanetary shuttle vehicle (ISV) is initiated

by applying a small impulse at the Sun-Earth L 1 point and theft starting the low-thrust engine. As the ISV

passes close to the Earth (point A in Figure 8.8), a much larger impulse is administered. During the helio-

centric portion of the transfer, only low thrust is employed. At the closest approach to the planet (point B

in Figure 8.8), another large impulse is applied, and a planetary landing vehicle (PLV) is separated from

the ISV and lands on the planet.* The ISV then proceeds to the Sun-planet L 2 point where capture is

effected by another small impulse. A reverse procedure is used for the inbound transfer.

Additional shuttle vehicles can be used for the transfer of crew members, fuel, and other supplies

between the Sun-Earth L 1 point and the Earth. This phase of the mission is similar to the elliptical orbit

pickup procedure discussed in Reference 90.

From the AV standpoint, the libration-point rendezvous technique probably does not have any sig-

nificant advantage over the elliptical orbit rendezvous method. However, the increased flexibility in the

*It may be more desirable to separate the PLV earlier or later, depending on the descent mode (atmospheric or
propulsive braking), guidance requirements, staging ratios, and safety or other factors.
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Figure 8.8-Transfer path between the Sun-Earth L 1

point and a Sun-planet L 2 point. Not to scale.

timing of various operations* (e.g., rendezvous,

abort, and landing) may justify a quantitative inves-

tigation of the libration-point rendezvous concept.

3. Deep Space Communications Using a Relay
Satellite at an Earth-Moon Equilateral-

Triangle Point

Future deep space missions will require :

much higher rates of data transmission than have

been attained to date. Laser communications sys-

tems show considerable promise for furnishing these

high data rates (Reference 92). However, to avoid

occultations caused by cloud cover and Earth rota-

tion, a relay satellite between the deep space vehi-

cle (DSV) and the Earth-based station will usually

be required.t A microwave link is used between the

Earth and the relay satellite, while an optical link

(laser beam) is used between the relay satellite and

the DSV.

The selection of the orbit for the relay sat-

ellite is very important, and the tradeoffs involved

in this choice are discussed in Reference 93. Although a preference for a synchronous (24-hour) orbit was

expressed in Reference 93, the possibility of stationing the relay satellite at an Earth-Moon equilateral-

triangle libration point was not considered. It is hoped that the equilateral-triangle points will be consid-

ered in future tradeoff studies because these locations seem to possess certain advantages over a synchro-

nous orbit. Some of these advantages are

(1) Less Earth occultation (almost none) of the optical communications link between the relay

satellite and the DSV.

(2) The Earth can usually be excluded from the field of view of the communications receiver on

the DSV. (The Earth is a strong noise source.)

(3) The maximum relative velocity normal to the line of sight between the relay satellite and the

DSV is smaller. Therefore, the pointing requirements for the laser beam are less stringent.

(4) The AV cost for the initial placement of the relay satellite is reduced by about 0.5 km/sec

(Reference 15).

Of course, the equilateral-triangle points also have some disadvantages when compared with a synchronous

orbit (e.g., the path loss for the microwave link is greater), and a complete systems evaluation is needed

before a final choice can be made.

*The timing problems associated with orbiting or landing missions to the satellites of Jupiter are particularly

involved (Reference 91).
_Occultation could also be avoided by using a large number of Earth stations, but frequent switchovers would be

necessary. Because the acquisition of a narrow laser beam is rather difficult, these switchovers would probably result

in the loss of some data.
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Thelibration-pointcommunicationssystemcouldalsobeusedfor anotherpurpose.Withtworelay
satellites,oneat L4andtheotherat L 5, it would be possible to take advantage of the large separation

distance (about 6.66 × 105 kin) to establish an interferometric tracking and navigation system with a long

baseline (Reference 94). However, because the baseline is rotating with respect to the DSV, it may be ad-

visable to generate two more baselines by placing a third relay satellite at the Earth-Moon L 3 point. (The

three baselines would form a triangle.)

B. Scientific Usefulness

1. A Multiple-Satellite System for Monitoring Solar-Induced

Phenomena in and Beyond the Earth's Magnetosphere

Since 1957, scientific satellites have collected a large amount of data concerning particles and

fields in the Earth's magnetosphere and in the interplanetary medium surrounding it (References 95 to 97).

These measurements have led to many impressive discoveries of previously unknown phenomena, but future

progress will be largely dependent on the ability to perform simultaneous observations at different locations.

Only in this way will it be possible to separate temporal from spatial variations.

Good coverage of cislunar space has already been achieved by using several satellites in highly

eccentric Earth orbits. However, beyond the Moon's orbit, the data are usually discrete. To improve this

situation, Robinson (Reference 14) has suggested that a satellite should be placed in the Earth's orbit about

6 × 106 mi in front of the Earth (this corresponds to a Sun-Earth isosceles-triangle point at about 0 _ 4°)

where it would continuously monitor the interplanetary medium that will be occupied by the Earth 4 days

later. Another possibility has been advanced by Meissinger and Greenstadt (Reference 17), who have exam-

ined the feasibility of obtaining long-term measurements in the Earth's geomagnetic tail by stationing a

satellite in the vicinity of the Sun-Earth L 2 point. These stationary satellites would provide some of the

data that are needed to discern the time variation of solar-induced phenomena in the Earth's neighborhood,

but more spatial coverage would be desirable.

Symmetrical spatial coverage could be obtained with a network of four satellites, as shown in Fig-

ure 8.9. These satellites are stationed at the isosceles-triangle points 11 and 12 (0-- i 2°) * and the collinear

points L 1 and L2.t When data collected at these points are compared with measurements taken in cislunar

space, some interesting correlations may be apparent. It may also be possible to find some correlation with

Earth weather data.

Notice that the satellite at the L 1 point could also function as an early warning station for solar

flares. Although the warning time would only be about 8 to 25 minutes (average velocities of solar flares

are between 1000 and 3000 km/sec), this may be sufficient for some purposes (e.g., a supersonic transport

flying at a high altitude could descend to a safer altitude on short notice).

*The value of 0 that is given here was chosen somewhat arbitrarily. The optimum choice can be determined only
after considering various tradeoffs (station-keeping cost, communications requirements, scientific value, etc.).

_The placement of a second satellite at L 2 distance, but along the nominal direction of the geomagnetic tail,
might also be profitable. By analyzing radio signals between this satellite and the satellite at Lu, it may be possible
to monitor the electron density in a cross section of the geomagnetic tail. The station-keeping cost for the displaced

satelhte would be about ]Fcy I = (BL2 - 1)_y = 1.25 x 10 g with 8y = 1.05 x 105 km.
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Figure 8.9-Multiple-satellite network. Satellites

anchored at L 1, L 2, I 1, and 12.

The station-keeping costs for the satellites

at the isosceles triangle points can be obtained from

Figure 2.8. For 0= +2 ° , the cost is IFcl _1.50 x

10-6g. At the collinear points, the costs are

negligibly small if DSIF tracking is utilized (see

Chapter V).

2. Low-Frequency Radio Astronomy from the

Earth-Moon L 2 Point

The low-frequency cutoff for Earth-based

radio telescopes is about 10 MHz. This limit could

be extended with an Earth-orbiting radio telescope,

but it would be extremely difficult to observe fre-

quencies below 1MHz because the ionosphere of the

Earth is a source of low-frequency radio noise. How-

ever, a radio telescope located at the Earth-Moon L 2

point would always be shielded from the Earth's

ionosphere by the Moon.* Therefore, the Earth-Moon

L 2 point may be an ideal location for low-frequency radio astronomy experiments. Of course, possible inter-

ference from the geomagnetic tail would not be completely eliminated, but the Earth-Moon L 2 point would

remain outside of the tail region for periods of almost 3 weeks.

*The use of the Earth-Moon L 2 point as a site for radio astronomy was originally suggested by Hornby and Allen
(Reference 15).
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CONCLUSIONS AND RECOMMENDATIONS

The translation control of a satellite in the vicinity of a libration point can be accomplished in a rather

simple manner. For instar _e, at an unstable collinear point, a single-axis control using only range and

range-rate measurements is sufficient. Moreover, the station-keeping costs are very low (comparable to

costs for synchronous satellite station keeping), and are well within the capability of present satellite

translation control systems.

The control system can be mechanized in many ways, and some possibilities were presented in this

study. (The author realizes that the engineering difficulties associated with the cable control technique are

rather formidable, but the method is intriguing.) The author urges that specific designs of control systems

for libration-point satellites be the focal point of future work; these studies should include detailed investi-

gations of propulsion systems and measurement techniques.

The potential usefulness of a libration-point satellite is apparent (see Chapter VIII). Therefore, the

early construction and flight testing of a libration-point satellite is strongly recommended. A costly devel-

opment program may not be necessary because a satisfactory test vehicle could probably be obtained by

modifying an Applications Technology Satellite. The Earth-Moon L 1 point might be a convenient location

for station-keeping tests, but a lunar far-side communication capability could also be achieved if the tests

were conducted in a quasi-periodic orbit around the Earth-Moon L 2 point.
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APPENDIX A

DERIVATION OF EQUATION 5.18

Given the Gaussian density function

with

1 t [x-P(t)]2 f

p(t)= K c cos _ot,

it is required to find the average control acceleration

where

XqbF,(X, t) dx.

(A1)

(A2)

(A3)

(A4)

With the change of variables

x- p(t)
y--

o F
(AS)

Equation A4 becomes

E{IFcx(t)l} - v_ J__
1_____[

[P+ °FY]e-Y_/2 dy + _ J-P/_F

_ PlfP/_Fe-Y2/2dy_f_P/_Fe-Y2/2dy] [J_o

°F [ _+co

-=Gl(t) + De(t).

ye-Y2/2 dy _ f _ p/°-F ye-Y2/2 dy1

[p+ OFY]e-,y2/2dy

(A6)
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In G2(t), let v _ - y2/2, then

2aF 2/2o.2
e v dv ---e -p F (A7)

The time average of Equation A7 is

6_ G r 2a F 9.7r 2

H 2 _ G2(t )dt = 277 J0 2 (2_)3/2 - 2_r2 dr

ox, _4J ox, _-_(27r) 3/2 COS
d7

- yox, _J/o exp
4a--_Fcos dr = V___e Ulo(u),

2 2
where Io(u) is a modified Bessel function and u =_Kc/4a F. The time average of Gl(t) can be written

f2_/_ 11_ f2_ G r

HI _ -_ jO Gl(t)dt = 2_ JO 1(_-) dr

---(2_/_Jo -_ # oos_d_.

Integrating by parts, Equation A9 becomes

Kc ¢ P---- _ P

x

sin t 2_ f2_ P
sin rdr_ .

The first portion of Equation A10 vanishes. Making use of the relation

= - +--sin r exp ,
dr o F

the remaining portion of Equation A10 is converted to

(A8)

(A9)

(AIO)

(All)
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!.:J

2K /o2 E2sin 2 r exp Kc c°s2

H 1 - (2rO3/2a F 2a2F dr

/o_ e-U e-U cos V-dT_
cos re-u cos 7-dT1

Kc_
v_, o-U_o(U)+ll(u)].

Therefore, the average control acceleration is given by

IFcxl = H 1 + H 2 =_12crFlo (u) + o(U) + Ii(u •

(AI2)

(A13)
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APPENDIX B

ECCENTRICITY CORRECTION FOR THE z-AXIS OSCILLATION

AT THE EARTH-MOON L 2 POINT

Following the procedures used in Chapter III, it is readily deduced that the differential equation for the

eccentricity correction of the z-axis oscillation at a collinear libration point is (see Equation 2.43c)

where

and

zn2 + BLZ.2 = 3pBLZ.I' (B1)

p--- ecos t (B2)

Znl = Azl cos Oazt. (B3)

The solution of Equation B1 can be written in the form

I

z.2=Az2cOs(co z+l)t+Az2cos(_o z 1)t. (B4)

At the Earth-Moon L 2 point, BL2 -- 3.19042, e :- 0.05490, and Oz = 1.78618. With these constants, it is

found that

and

Az2 = 0.057460 Azl

!

Az2 = - 0.10416 Azl.

(B5)
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